EDM systematic uncertainties due to radial and longitudinal B-fields and pitch – spin tracking

D. Rubin

Cornell University

June 6, 2024

$$x = x' = y = y' = 0$$

Initial polarization

$$s_{rad} = s_{vert} = 0, \ s_{long} = 1$$

EDM
$$d = 4.67 \times 10^{-20} e - cm$$

Single particle spin tracking

Continuous quad approximation No nonlinearity

$$\frac{\mathrm{d}}{\mathrm{d}s}\mathbf{S} = \left\{\frac{(1+\mathbf{r}_t\cdot\mathbf{g})}{c\,\beta_z}\,\left(\mathbf{\Omega}_{BMT} + \mathbf{\Omega}_{EDM}\right) - \mathbf{g}\times\widehat{\mathbf{z}}\right\}\times\mathbf{S}$$

$$\mathbf{\Omega}_{BMT}(\mathbf{r}, \mathbf{P}, t) = -\frac{q}{m c} \left[\left(\frac{1}{\gamma} + a \right) c \mathbf{B} - \frac{a \gamma c}{1 + \gamma} \left(\boldsymbol{\beta} \cdot \mathbf{B} \right) \boldsymbol{\beta} - \left(a + \frac{1}{1 + \gamma} \right) \boldsymbol{\beta} \times \mathbf{E} \right]$$

$$\mathbf{\Omega}_{EDM}(\mathbf{r}, \mathbf{P}, t) = -\frac{q \eta}{2 m c} \left[\mathbf{E} - \frac{\gamma}{1 + \gamma} \left(\boldsymbol{\beta} \cdot \mathbf{E} \right) \boldsymbol{\beta} + c \, \boldsymbol{\beta} \times \mathbf{B} \right]$$

$$\mathbf{d} = \frac{\eta}{2} \, \frac{q}{m \, c} \, \mathbf{S}$$

$$\mathbf{d}[e-cm] = 4.66 \times 10^{-14} \eta$$

$$x = x' = y = y' = 0$$

Initial polarization

 $s_{rad} = s_{vert} = 0, \ s_{long} = 1$

$$d = 5.4 \times 10^{-18} \mathrm{e} - \mathrm{cm}$$

Figure 7: The time modulated average vertical component of the rest frame muon polarisation vector, with an injected EDM of $5.4 \times 10^{-18} e \cdot cm$ (30× BNL). The amplitude of the fit gives a rest frame tilt angle of 49.5 ± 0.3 mrad (1.69±0.01 mrad in the laboratory frame), which is consistent with expectation.

x = x' = y = 0, y' = 1 mrad

Initial polarization

(Longitudinal polarization refers to left hand axis labels. Vertical polarization refers to right hand axis. Note exponent.)

June 6, 2024

oscillation

Pitch

Longitudinal magnetic field

Initial phase space coordinates

$$x = x' = y = y' = 0$$

Initial polarization

$$s_{rad} = s_{vert} = 0, \ s_{long} = 1$$

 $B_{long} = 1 \text{ ppm}$ uniform around ring

Radial B-field - EDM equivalency

$$\begin{split} \mathbf{\Omega}_{BMT}(\mathbf{r},\mathbf{P},t) &= -\frac{q}{mc} \left[\left(\frac{1}{\gamma} + a \right) c \, \mathbf{B} - \frac{a \, \gamma \, c}{1 + \gamma} \left(\boldsymbol{\beta} \cdot \mathbf{B} \right) \boldsymbol{\beta} - \left(a + \frac{1}{1 + \gamma} \right) \boldsymbol{\beta} \times \mathbf{E} \right] \\ \mathbf{\Omega}_{EDM}(\mathbf{r},\mathbf{P},t) &= -\frac{q \, \eta}{2 \, m \, c} \left[\mathbf{E} - \frac{\gamma}{1 + \gamma} \left(\boldsymbol{\beta} \cdot \mathbf{E} \right) \boldsymbol{\beta} + c \, \boldsymbol{\beta} \times \mathbf{B} \right] \\ \left(\frac{1}{\gamma} + a \right) B_{radial} \leftrightarrow \frac{\eta}{2} \left(\boldsymbol{\beta} \times \mathbf{B} \right) \\ \mathbf{d} [\mathbf{e} - \mathbf{cm}] &= 4.66 \times 10^{-14} \eta \\ \frac{1}{\gamma} + a \right) \frac{B_{radial}}{B} \quad \leftrightarrow \quad 0.215 \times 10^{14} \frac{d}{2} [\mathbf{e} - \mathbf{cm}] \\ \frac{B_{radial}}{B} \quad \leftrightarrow \quad 6.29 \times 10^{14} \frac{d}{2} [\mathbf{e} - \mathbf{cm}] \end{split}$$

Dataset	$\langle B_r \rangle$ [ppm]	Equivalent $d_{\mu} [\times 10^{-20} \ e \cdot cm]$
1a	22 ± 7	7 ± 2
1b	23 ± 8	7 ± 3
1c	30 ± 8	9 ± 3
1d	34 ± 9	10 ± 3

Table 15: Estimates for $\langle B_r \rangle$ in ppm, as well as the equivalent fake EDM signal in $e \cdot \text{cm}$, for various E989 datasets [33][2].

$$x = x' = y = y' = 0$$

Initial polarization

 $\mathbf{\Omega}_{BMT}(\mathbf{r}, \mathbf{P}, t) = -\frac{q}{mc} \left[\left(\frac{1}{\gamma} + a \right) c \mathbf{B} - \frac{a \gamma c}{1 + \gamma} \left(\boldsymbol{\beta} \cdot \mathbf{B} \right) \boldsymbol{\beta} - \left(a + \frac{1}{1 + \gamma} \right) \boldsymbol{\beta} \times \mathbf{E} \right]$

 $F_e = qE$ $F_b = qc(\beta \times \mathbf{B})$ $E = c(\beta B_{rad})$

Net contribution from B_{rad} and compensating E_{vert} $\left(\frac{1}{\gamma}+a\right)cB_{rad}-\left(a+\frac{1}{1+\gamma}\right)\beta E_v$

Initial phase space coordinates

 $y=1.37\mathrm{mm},\;x=x'=y'=0$ Closed orbit displaced vertically by radial B field

$$\frac{\left(\frac{1}{\gamma}+a\right)cB_{rad}-\left(a+\frac{1}{1+\gamma}\right)\beta E_{vert}}{\left(\frac{1}{\gamma}+a\right)cB_{rad}}\sim\frac{1}{\gamma}$$

June 6, 2024

D. Rubin

Oscillation about the displaced vertical closed orbit

Initial phase space coordinates x = x' = y = y' = 0

On the displaced closed orbit

Initial phase space coordinates y = 1.37mm, x = x' = y' = 0