
G-2 Internal

Version 1.0

August 13, 2019

On the background correction of the Cornell fast rotation Fourier analysis

J. Fagin1, A. Chapelain1, D. Rubin1, and D. Seleznev1

1Cornell University

Abstract1

The muon frequency distribution is found by taking the cosine Fourier transformation of the fast rotation2

signal. The cosine Fourier transformation should begin at a time t0 when the centroid of the time profile of3

the muon beam first passes the detector. We want to start the Fourier transform at a later start time ts in4

order to skip the beam-line positron contamination of the muon beam which continues for the first 4 µs and5

possibly to skip scraping which lasts for the first 30 µs of the fast rotation signal. The missing time between6

t0 and ts of the cosine Fourier transformation must be accounted for. This missing time creates a background7

on the cosine Fourier transformation which must be removed. We fitted the background and then subtract8

it to recovered the complete frequency distribution.9

The background can be fitted using di↵erent functions which are all equivalent for values of ts of at least10

4 µs, enough to skip the positron contamination. The background can be fitted accurately for values of ts up11

to 25 µs for both Gaussian and asymmetric Monte Carlo fast rotation signals using some fit functions. For12

frequency distributions with higher statistics and less width, we would likely be able to fit the background13

all the way up to 30 µs allowing us to skip all of scraping.14

We also o↵er an alternative approach by first approximate the frequency distribution and then using15

the approximation to calculate the background. An iterative process can be used which self corrects the16

background allowing us to instead start with the cosine Fourier transformation as the approximate frequency17

distribution. These approaches work precisely for values of ts of at least 4 µs but falter when ts is greater18

than 8 µs.19
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1 Introduction53

The goal of the fast rotation Fourier analysis is to calculate the E-field correction to !a which is the precession54

frequency of the muon’s spin about its momentum. The E-field correction is directly calculated from the55

radial distribution of the muons which is produced from the frequency distribution. To calculate the E-field56

correction, we must be able to extract the frequency distribution from the fast rotation signal to a high degree57

of accuracy [1].58

The frequency distribution of the muons about the ring is obtained by doing a Fourier transformation of the59

fast rotation signal. The fast rotation signal is the change in the intensity of the muons as they go around the60

ring at a fixed location. since the frequency distribution of the muons is approximately even about its center,61

the frequency distribution is obtained by taking the real part of the Fourier transformation, which is the cosine62

Fourier transformation [2].63
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When taking the cosine Fourier transformation of the fast rotation signal, we must skip the first several64

microseconds of data because there is beam-line positron contamination of the muon beam which is gone by 465

µs . Figure 1 shows the beam-line positron contamination of the muon beam on the first first 4 µs of the fast66

rotation signal for the Run-1 60-hour data set. The first 30 µs of the fast rotation signal is a✏icted by scraping67

which may a↵ect the radial distribution of the muons, so ideally we also want the ability skip this as well.68

The cosine Fourier transformation ideally begins at the time when the centroid of the time profile of the69

muon beam first passes the detector denoted as t0. We must instead start the cosine Fourier transformation70

of the fast rotation signal not at t0 but instead a later start time ts to skip the positron contamination and71

ideally scraping. To recover an accurate frequency distribution, the missing time in the cosine Fourier transform72

between t0 and ts must be accounted for.73
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Figure 1: The first 10 µs of the fast rotation signal is shown for Run-1 60-hour data set. The positron interference

can be seen in the first 4 µs of the signal.

For a fast rotation signal S(t), the frequency distribution S̃(!) can be recovered via the cosine Fourier74

transform [2]:75

S̃(!) =

r
2

⇡

Z 1

t0

S(t) cos!(t � t0)dt =

r
2

⇡

Z 1

ts

S(t) cos!(t � t0)dt +

r
2

⇡

Z ts

t0

S(t) cos!(t � t0)dt. (1)

The integral between t0 and ts is the correction to the fast rotation signal denoted �(!). The correction is76

equal to the following equation where !+ = 6.748 MHz and !� = 6.663 MHz are the bounds of the collimator77

aperture [2]:78

�(!) =

r
2

⇡

Z ts

t0

S(t) cos!(t� t0)dt ⇡
1

⇡

Z !+

!�
S̃(!0)sin[(! � !0)(ts � t0)]

! � !0 d!0. (2)

We add the correction to the cosine Fourier transformation in order to recover the complete frequency dis-79

tribution. We do this by fitting for the background to the cosine Fourier transformation which is the negative of80

the correction. Then we subtract the background from the cosine Fourier transformation yielding the complete81

frequency distribution.82

83

Important note: The equation (2) above and all the other equations in this note use angular frequencies84

!, however all figures are shown using frequency f where ! = 2⇡f . Using angular frequency makes calculations85
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clearer, but to get physically meaningful figures all angular frequencies must be converted to regular frequencies86

by dividing by 2⇡.87

2 Analytic forms of the background of the cosine Fourier transform88

The goal of this work is to derive general analytical forms of the cosine Fourier transform background in89

order to be able to fit for it and therefore correct for it for simulated and real data. Analytical frequency90

distributions with increasing complexity and realism will be plugged into equation (2). The analytical form of91

the cosine Fourier transform in the real data is not known but a general enough background form will be a92

good approximation.93

2.1 Dirac delta frequency distribution94

For an arbitrary frequency distribution S̃(!) confined within the collimator aperture at !� and !+, we know the95

form of the correction to the cosine Fourier transformation of the fast rotation signal is given by the following96

equation:97

�(!) =
1

⇡

Z !+

!�
S̃(!0)sin[(! � !0)(ts � t0)]

! � !0 d!0. (3)

We will first assume that the frequency distribution is a Dirac delta function centered at a frequency !0:98

S̃(!) = �(! � !0). (4)

We start with a Dirac delta function because it is the simplest function to integrate and only has a single99

defining parameter which is its center. We plug the delta function ansatz into equation (3):100

�(!) =
1

⇡

Z !+

!�
�(!0 � !0)

sin[(! � !0)(ts � t0)]

! � !0 d!0 = 1

⇡

sin[(! � !0)(ts � t0)]

(! � !0)
. (5)

The background in equation (6) takes the form of a sinc function since:101

�(!) =
(ts � t0)

⇡
sinc[(! � !0)(ts � t0)]. (6)

We show in figure 2 the background for a Dirac delta function centered at the magic frequency with di↵erent102

start times. The magic frequency is at 6.705 MHz. The input frequency distribution is the same Dirac delta103

function each time, but the background changes with ts.104
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(a) (b) (c)
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Figure 2: Background with t0 = 0 µs and di↵erent values of ts for a Dirac delta function frequency distribution

centered at the magic frequency. Six start times are shown: (a) 5 µs, (b) 10 µs, (c) 15 µs, (d) 20 µs, (e) 25 µs,

(f) 30 µs.

2.2 Step function frequency distribution105

The work done in the previous section assumed a Dirac delta frequency distribution. We can make a similar106

derivation using a step function frequency distribution. We choose to use a step function because we are still107

able to integrate it into equation (3) and it is a more realistic frequency distribution than a delta function since108

the muon beam must have some spread around the ring.109

The step function frequency distribution is defined between !1 and !2 where !1 and !2 are within the110

bound of the collimator aperture and !2 > !1. Then we have a normalized frequency distribution as follows:111

S̃(!) =
1

!2 � !1

(
1 !1  !  !2

0 else
(7)

When we plug this directly into our equation for the background correction (3):112

�(!) =
1

⇡(!2 � !1)

Z !2

!1

sin[(! � !0)(ts � t0)]

! � !0 d!0 = 1

⇡(!2 � !1)

⇥
Si((!�!1)(ts�t0))�Si((!�!2)(ts�t0))

⇤
, (8)

where the Si function is defined as:113

Si(x) =

Z x

0

sin(y)

y
dy. (9)

Using a step function frequency distribution is a large improvement from the Dirac delta function since we114

can enclose any frequency distribution within a step function as a rough approximation for the correction to115
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the cosine Fourier transformation. The Dirac delta function only had a single characteristic parameter which116

was its center. The step function frequency distribution has two characteristic parameters corresponding to117

each bound of the step function. This additional parameter is an extra degree of freedom when fitting the118

background which makes the fit work for much larger values of ts. Figure 3 shows the background for a step119

function centered at the magic frequency with a width of 10 kHz.120

(a) (b) (c)

(d) (e) (f)

Figure 3: Background with t0 = 0 µs and di↵erent values of ts for a step function frequency distribution

centered at the magic frequency and a width of ±10 kHz. Six start times are shown: (a) 5 µs, (b) 10 µs,

(c) 15 µs, (d) 20 µs, (e) 25 µs, (f) 30 µs.

2.3 Gaussian frequency distribution121

We now consider a Gaussian frequency distribution since it is more realistic than the step function because the122

muon beam for real data is smooth without the jagged corners that a step function has. We assume a Gaussian123

frequency distribution centered at the magic frequency !0 with standard deviation �:124

S̃(!) =
1p
2⇡�2

e�
(!�!0)

2

2�2 . (10)

We then plug the Gaussian frequency distribution directly into equation (3):125

�(!) =
1

⇡

Z !+

!�

1p
2⇡�2

e�
(!0�!0)

2

2�2
sin[(! � !0)(ts � t0)]

! � !0 d!0. (11)

Physical frequency distributions must be confined within the collimator aperture since the muon beam must126

exist within the ring. We assume a Gaussian frequency distribution who’s full 5-standard-deviation width is127

contained within the collimator aperture. Therefore, we evaluate the integral with arbitrarily large bounds128
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since the Gaussian will be close to zero outside the physical frequency range. This is necessary so that the129

integral can be evaluated analytically.130

�(!) =
1p

2⇡3�2

Z +1

�1
e�

(!0�!0)
2

2�2
sin[(! � !0)(ts � t0)]

! � !0 d!0, (12)

and now we can evaluate the integral:131

�(!) =
1p

2⇡3�2

Z ts�t0

0
dt

Z +1

�1
e�

(!0�!0)
2

2�2 cos(! � !0)td!0

=
1p

2⇡3�2

Z ts�t0

0
dtRe

nZ +1

�1
e�

(!0�!0)
2

2�2 +i(!�!0)td!0
o

=
1p

2⇡3�2

Z ts�t0

0
dtRe

nZ +1

�1
e�

!02
2�2+(

!0
�2 �it)!0+i!t� !2

0
2�2 d!0

o
.

(13)

The inner integral can be evaluated since it is a standard Gaussian integral of a degree two polynomial. It132

is solved by completing the square as follows:133

�(!) =
1p

2⇡3�2

Z ts�t0

0
dtRe

np
2⇡�2e

�2

2 (
!0
�2 �it)2+i!t� !2

0
2�2

o
=

1

⇡
e

�!2
0

2�2 Re
nZ ts�t0

0
e

�2

2 (
!0
�2 �it)2+i!tdt

o

=
1

⇡
e

�!2
0

2�2 Re
n
i

r
⇡

2�2
e�

!0!

�2 �!2

2�

h
erfi

�! � !0p
2�2

�
� erfi

�! � !0 + i�2(ts � t0)p
2�2

�io

=
1p
2⇡�2

e
�(!�!0)

2

2�2 Re
n
i
h
erfi

�! � !0p
2�2

�
� erfi

�! � !0 + i�2(ts � t0)p
2�2

�io
,

(14)

where the error function, erf(x), is defined by the following equation:134

erf(x) =
2p
⇡

Z x

0
e�y2dy. (15)

The imaginary error function is defined such that: erfi(x) = �i erf(ix). The first erfi function in equation135

(14) can be eliminated because i erfi
�
!�!0p
2�2

�
will always be imaginary so its real part is zero so:136

�(!) =
1p
2⇡�2

e
�(!�!0)

2

2�2 Re
n
� i erfi

�! � !0 + i�2(ts � t0)p
2�2

�o

=
1p
2⇡�2

e
�(!�!0)

2

2�2 Im
n
erfi

�! � !0 + i�2(ts � t0)p
2�2

�o
. (16)

The form of the correction we derived in equation (16) is proportional to the original Gaussian frequency137

distribution such that:138

�(!) = S̃(!) Im
n
erfi

�! � !0 + i�2(ts � t0)p
2�2

�o
. (17)

Similarly to the step function, the Gaussian frequency distribution has two characteristic parameters corre-139

sponding to the mean and standard deviation of the Gaussian. The Gaussian and step function therefore have140

the same number of degrees of freedom, however a Gaussian frequency distribution is a better representative141
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of real data. Featured in figure 4 is the background calculated using equation (16) with di↵erent values of ts142

for a frequency distribution centered at the magic frequency with a standard deviation of 5 kHz.143

(a) (b) (c)

(d) (e) (f)

Figure 4: Background with t0 = 0 µs and di↵erent values of ts for a Gaussian frequency distribution centered

at the magic frequency and a standard deviation of 5 kHz. Six start times are shown: (a) 5 µs, (b) 10 µs,

(c) 15 µs, (d) 20 µs, (e) 25 µs, (f) 30 µs.

2.4 Triangular frequency distribution144

We can also derive the form of the correction to the cosine Fourier transform by assuming a triangular frequency145

distribution. We want to do this because a triangular frequency distribution is very similar to a Gaussian146

frequency distribution since we can approximately contain a triangle within a Gaussian. The benefit of the147

triangle is that since it does not have to be symmetric about its center, the analytic form of the correction148

incorporates asymmetries in the frequency distribution.149

We assume the triangle frequency distribution to be zero outside a range of !1 and !2 where !1 and !2150

are within the bound of the collimator aperture, and the center of the triangle !0 is between them such that151

!1  !0  !2. Then we have a normalized triangular frequency distribution of the following form:152

S̃(!) =
1

2(!2 � !1)

8
><

>:

!�!1
!0�!1

!1  !  !0
!2�!
!2�!0

!0 < !  !2

0 else

(18)

We then plug the triangle frequency distribution (18) directly into our equation (3) for the background:153

8



�(!) =
1

⇡

Z !+

!�
S̃(!0)sin[(! � !0)(ts � t0)]

! � !0 d!0

=
1

2⇡(!2 � !1)

h Z !0

!1

!0 � !1

!0 � !1

sin[(! � !0)(ts � t0)]

! � !0 d!0+
Z !2

!0

!2 � !0
!2 � !0

sin[(! � !0)(ts � t0)]

! � !0 d!0
i

=
1

2⇡(!2 � !1)

h ! � !1

!0 � !1
[Si((!�!1)(ts�t0))�Si((!�!0)(ts�t0))]+

cos((! � !1)(ts � t0))� cos((! � !0)(ts � t0))

(!0 � !1)(ts � t0)

+
!2 � !

!0 � !2
[Si((! � !1)(ts � t0))� Si((! � !0)(ts � t0))]�

cos((! � !2)(ts � t0))� cos((! � !0)(ts � t0))

(!0 � !2)(ts � t0)

i
.

(19)

The triangle frequency distribution has three characteristic parameters instead of the two which the step154

function and Gaussian frequency distributions have. These parameters correspond to the bounds of the triangle155

and its center. The extra parameter gives an additional degree of freedom to the background fit which is able to156

incorporate the asymmetry of frequency distributions. This makes the triangle frequency distribution general157

enough to approximate a frequency distribution similar to real data.158

Figure 5 shows the background for a triangular frequency distribution centered at the magic frequency with159

a width of 10 kHz. We can see that the form of the background looks almost identical to the Gaussian or step160

function backgrounds.161

In figure 6 we show the background for a triangle frequency distribution centered at the magic frequency162

with a left bound of -10 kHz and a right bound of +30 kHz from its center. For values of ts of 20 µs and less,163

the background remains mostly symmetric about its center. When ts becomes large, however, the background164

does not obey this symmetry but instead skews to the right. This is why the step function, Gaussian, and165

triangle frequency distributions can befitted to the background for an asymmetric frequency distribution for166

approximately 20 µs, but past this point only the triangular frequency background is able to include the167

asymmetry.168
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(a) (b) (c)

(d) (e) (f)

Figure 5: Background with t0 = 0 µs and di↵erent values of ts for a triangular frequency distribution centered

at the magic frequency and bound 10 kHz from the center. Six start times are shown: (a) 5 µs, (b) 10 µs,

(c) 15 µs, (d) 20 µs, (e) 25 µs, (f) 30 µs

(a) (b) (c)

(d) (e) (f)

Figure 6: Background with t0 = 0 µs and di↵erent values of ts for a triangular frequency distribution centered

at the magic frequency left bound of -10 kHz and right bound +30 kHz from its center. Six start times are

shown: (a) 5 µs, (b) 10 µs, (c) 15 µs, (d) 20 µs, (e) 25 µs, (f) 30 µs.
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2.5 Discussion of other possible analytic forms169

We have been able to derive the analytic form of the correction to the cosine Fourier transformation using170

four di↵erent ansatzes for the frequency distribution. There are not many frequency distributions which can171

be plugged into (3) to get an analytic solution. In section 4 and 5 we show how the triangular frequency172

distribution can be fitted to both a Gaussian and asymmetric frequency distribution backgrounds so we have173

succeeded in our goals.174

A possible improvement over the Gaussian frequency distribution for fitting asymmetric frequency distribu-175

tions would be to use a skewed-Gaussian frequency distribution defined by (37). Deriving a usable analytic form176

of the background for a skewed-Gaussian is very challenging since we would have to integrate it in equation(3).177

An other improvement could be to use instead of a triangular frequency distribution, a higher order polygon.178

This complicates things however, since for each additional order of the polygon, we require an additional179

parameter to be fitted. The triangle frequency distribution is the most practical since it requires the least180

amount of parameters to fully describe the background.181

3 Analytic background comparisons of the cosine Fourier transform182

In this section we will compare how all of the analytic models for the background to the cosine Fourier transform183

are equivalent when ts is small, but diverge for large values of ts. In appendixes B and C we show how we184

can Taylor expand the di↵erent analytic forms to show how these various functions are equivalent in the limit185

where ts is small and the frequency distribution is approximately symmetric.186

3.1 Comparison of the delta, step, Gaussian, and triangular backgrounds187

Figure 7 shows the comparison of the di↵erent analytic forms of the background to the cosine Fourier transfor-188

mation derived in section 2. We normalize the background for comparison purposes.189

We can see that the backgrounds almost exactly overlay with each other. It is not until late start times where190

the backgrounds begin to show the forms of the frequency distributions which they came from. For ts = 30 µs,191

the delta function background is diverged from the step function, Gaussian, and triangular backgrounds. The192

step function, Gaussian, and triangular backgrounds behave similarly at 30 µs, however the triangular function193

has the special feature that it can incorporate asymmetries in the frequency distribution which can not be seen194

in this figure since the background is symmetric.195
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(a) (b) (c)

(d) (e) (f)

Figure 7: Background with t0 = 0 µs and di↵erent values of ts for the delta function, step function, Gaussian,

and triangle backgrounds used in figures [2,3,4,5]. Six start times are shown: (a) 5 µs, (b) 10 µs, (c) 15 µs,

(d) 20 µs, (e) 25 µs, (f) 30 µs.

3.2 The background cancels the frequency distribution at late start times196

In figure 8 we show the background compared to the delta function, step function, Gaussian, and triangular197

frequency distributions for a start time of 200 µs. The amplitude of the distributions is arbitrary so we normalize198

for the comparison. Note that we also do this for the delta function even though it is infinite.199

We can see that using this very late start time, the background approximately matches the frequency200

distribution. The cosine Fourier transformation is the frequency distribution plus the correction, so for large201

start times the background completely cancels out the frequency distribution making it impossible to recover202

the complete frequency distribution.203
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(a) (b)

(c) (d)

Figure 8: Background Comparison with t0 = 0 µs and a large start time of ts = 200 µs between Gaussian, step

function, and triangular frequency distributions used in figures [2,3,4,5]. Four functions are shown: (a) Delta,

(b) Step Function, (c) Gaussian, (d) triangle.
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4 Monte Carlo fitting with a Gaussian frequency distribution204

(a) (b)

(c) (d)

Figure 9: Fast rotation signal as a function of time generated by a Monte Carlo simulation [3]. The fast rotation

signal has a Gaussian frequency distribution and longitudinal beam profile. The Frequency distribution is

centered at the magic frequency with a fractional energy o↵set of 0.16% and the longitudinal beam profile is

centered at 0 µs with a standard deviation of 25 ns. Four time intervals are shown: (a) 0-400 µs, (b) 10-100 µs,

(c)10-30 µs, (d) 10-11 µs.
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(a) (b)

Figure 10: The Gaussian frequency distribution and longitudinal beam profile used in the Monte Carlo fast

rotation signal shown in figure 9. (a) Frequency distribution, (b) Longitudinal beam profile.

In figures 9 and 10 we show a Monte Carlo fast rotation signal and the frequency distribution and longitudinal205

beam profile used to make it. The Monte Carlo is created using the analytic form of the fast rotation signal206

without noise nor statistical fluctuation [3]. We use this pristine fast rotation signal to test the background207

fitting for the di↵erent functions.208

In figure 11 we show the cosine Fourier transformation of the fast rotation signal for di↵erent values of ts.209

In appendix A we discuss how the width of the frequency distributions limits how large ts can be and still have210

the approximate forms for the background to the cosine Fourier transformation be valid. For this Monte Carlo211

simulation, we use a frequency distribution wider than what is found in the data since we want to find the212

upper limits of ts that allows us to reliably recover the frequency distribution.213

For large values of ts, the background distorts the main peak of the cosine Fourier transformation and it will214

no longer resemble the actual frequency distribution. This is because by ts = 20 µs the width of the main peak215

begins to get smaller as the background merges with it. For the small start time of ts = 5 µs the background216

on the cosine Fourier transformation is approximately parabolic and does not interfere with the actual signal.217

The background is fitted to the cosine Fourier transformation using frequencies a distance away from the218

minima which we specify in each figure. The fitted background is subtracted from the cosine Fourier trans-219

formation to recover the original frequency distribution. This is the simplest way of recovering the frequency,220

but we can use the full Fourier method for more accuracy [1]. The results of our analysis underperforms what221

would be obtained using the full method.222

Important note: In this note the E-field correction is calculated using the linear approximation [1]. For223

Monte Carlo simulations the field index is arbitrary so we use a value of n = 0.1075 which to match the Run-1224

60-hour data set.225
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(a) (b) (c)

(d) (e) (f)

Figure 11: cosine Fourier transformation of the Monte Carlo in figure 9 using the correct value of t0 with

di↵erent values of ts. Six start times are shown: (a) 5 µs, (b) 10 µs, (c) 15 µs, (d) 20 µs, (e) 25 µs, (f) 30 µs.

4.1 polynomial226

We can Taylor expand any of the analytic forms of the background which we derived, so we know that the227

background can be fitted with a polynomial for small start times. In the following equation we show how we228

can Taylor expand the sine function around ! = !0 when |(! � !0)(ts � t0)| ⌧ 1:229

�(!) =
1

⇡

sin[(! � !0)(ts � t0)]

(! � !0)

=
1

⇡

1

(! � !0)

1X

n=0

(�1)n[(! � !0)(ts � t0)]2n+1

(2n+ 1)!
=

(ts � t0)

⇡

1X

n=0

(�1)n[(! � !0)(ts � t0)]2n

(2n+ 1)!

=
(ts � t0)

⇡

�
1� [(! � !0)(ts � t0)]2

3!
+

[(! � !0)(ts � t0)]4

5!
� [(! � !0)(ts � t0)]6

7!
+ ...

�
.

(20)

This is the simplest way of fitting the background since it does not require any knowledge of the shape of230

the background because each coe�cient of the polynomial is fitted without having to give any initial values.231

In appendix A we discuss how when ts is small the background is approximately parabolic. For this small232

start time, we only need a degree 2 polynomial to fit the background. If we use a higher order polynomial then233

we can use some larger values of ts.234

We show in figure 12 that the background can be fitted with a degree 6 polynomial for ts = 5 µs. There235

does not seem to be any downside to using more orders of the polynomial, so we use 6 terms of the polynomial236
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which is more than enough.237

Figure 13 shows that by 10 µs, the background is too highly-nonlinear and not of polynomial form to be238

fitted. To skip scraping we will have to use more sophisticated fit functions, however the polynomial fit is more239

than su�cient to skip the beam-line positron contamination of the muon beam240

(a) (b)

Figure 12: Fitting the background with a polynomial fit of degree 6 with ts = 5 µs fitting 0.5 kHz away from

minima. (a) Fitted cosine Fourier transformation (b) Recovered Frequency Distribution.

(a) (b)

Figure 13: Fitting the background with a polynomial fit of degree 6 with ts = 10 µs fitting 0.5 kHz away from

minima. (a) Fitted cosine Fourier transformation, CE = -378.04 ppb (b) Recovered Frequency Distribution,

CE = -359.52 ppb.

4.2 sinc241

We showed in section 2.1 that we can approximate the frequency background using a sinc function in equation242

(6). This enables us to fit the background outside the signal with a sinc function. The amplitude of the243

background is arbitrary so we fit the background as the following:244
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�(!) = �A sinc[(! � !0)t], (21)

where the parameters A, !0, and t are fitted to match the distribution. The parameter t represents ts � t0.245

We could include an additive constant term to the background fit as well, but it does not make any di↵erence246

on the fit as it will be fitted to nearly zero. We therefore do not included an additive constant for any of our247

fit functions.248

Figure 14 shows the sinc background fit for ts = 5 µs. This fits the background well with a CE di↵erence249

of only 13.42 ppb. For large values of ts, the background cannot be fitted as well. We show in figure 15 that250

the sinc function being fitted to the background for ts = 30 µs which yields a large CE di↵erence of 222.2 ppb.251

The sinc function will outperform the polynomial fit, however still falters for values of ts greater than 15 µs.252

(a) (b)

Figure 14: Fitting the background with a sinc function with ts = 5 µs fitting 2.0 kHz away from the min-

ima. (a) Fitted cosine Fourier transformation, CE = -378.04 ppb (b) Recovered Frequency Distribution,

CE = -379.70 ppb.
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(a) (b)

Figure 15: Fitting the background with a sinc function with ts = 30 µs fitting 2.0 kHz away from the min-

ima. (a) Fitted cosine Fourier transformation, CE = -378.04 ppb (b) Recovered Frequency Distribution,

CE = -167.82 ppb.

4.3 Si253

We showed in section 2.2 to be Si functions of the form in equation (22). With an arbitrary amplitude we254

approximate the form of the background to be:255

�(!) = �A
⇥
Si((! � !1)t)� Si((! � !2)t)

⇤
, (22)

where the fit parameters A, !1, !2, and t. We see in figure 16 that for ts = 5 µs the background is fitted256

very well with a di↵erence in CE of only 1.66 ppb. For ts = 15 µs as shown in figure 17, we are still able to257

fit the background using with this analytic form yielding only a small CE di↵erence of 8.35 ppb. For ts = 30258

µs, the Si function fits the background decently, but there is still a large CE di↵erence of 154.0 ppb since the259

frequency distribution includes negative values.260
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(a) (b)

Figure 16: Fitting the background with Si functions with ts = 5 µs fitting 2.0 kHz away from the minima. (a) Fit-

ted cosine Fourier transformation, CE = -378.04 ppb (b) Recovered Frequency Distribution, CE = -379.70 ppb.

(a) (b)

Figure 17: Fitting the background with Si functions with ts = 15 µs fitting 2.0 kHz away from the min-

ima. (a) Fitted cosine Fourier transformation, CE = -378.04 ppb (b) Recovered Frequency Distribution,

CE = -369.68 ppb.

20



(a) (b)

Figure 18: Fitting the background with a Si functions with ts = 30 µs fitting 2.0 kHz away from the min-

ima. (a) Fitted cosine Fourier transformation, CE = -378.04 ppb (b) Recovered Frequency Distribution,

CE = -224.03 ppb.

4.4 erfi261

We derive in section 2.3 that the background for a Gaussian frequency distribution takes the form of equation262

(16). With an arbitrary amplitude we use the fit function of the following form:263

�(!) = �Ae
�(!�!0)

2

2�2 Im
n
erfi

�! � !0 + i�2tp
2�2

�o
, (23)

and we fit for the parameters A, �, !0, and t. Figure 19 shows that the background can be fitted well using264

the erfi function for ts = 5 µs yielding a CE di↵erence of only 1.66 ppb from the known answer. Unlike the265

other background forms, we shown in figure 20 that we can fit the background using the erfi function for values266

all the way up to ts = 30 µs without problems. The di↵erence in E-field correction at ts = 30 µs is only 7.35267

ppb, so we succeeded in our goal to use a value of ts large enough to skip scraping for this Gaussian Monte268

Carlo.269

We should not be too surprised that we were able to fit the background all the way up to ts = 30 µs since270

we are using the exact analytic form of the background for a Gaussian frequency distribution, so we are not271

making any approximations in the form of the background.272
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(a) (b)

Figure 19: Fitting the background with a erfi function with ts = 5 µs fitting 2.5 kHz away from the min-

ima. (a) Fitted cosine Fourier transformation, CE = -378.04 ppb (b) Recovered Frequency Distribution,

CE = -379.70 ppb.

(a) (b)

Figure 20: Fitting the background with a erfi function of degree 6 with ts = 30 µs fitting 2.5 kHz away from the

minima. (a) Fitted cosine Fourier transformation, CE = -378.04 ppb (b) Recovered Frequency Distribution,

CE = -385.39 ppb.

4.5 Triangular273

In section 2.4 we showed that a triangular frequency distribution produces a frequency background of the form274

in equation (19). When we include an arbitrary amplitude we obtain the following form of the background:275

�(!) = �A
h ! � !1

!0 � !1
[Si((! � !1)t)� Si((! � !0)t)] +

cos((! � !1)t)� cos((! � !0)t)

(!0 � !1)t

+
!2 � !

!0 � !2
[Si((! � !1)t)� Si((! � !0)t)]�

cos((! � !2)t)� cos((! � !0)t)

(!0 � !2)t

i
, (24)

22



where the parameters A, !1, !2, !0, and t are fitted to the background. In figure 21 we show that for276

ts = 5 µs, the background is fitted well with a CE di↵erence of only 0.321 ppb. For ts = 15 µs as shown in277

figure 22, the background can still be fitted using the triangle function with a CE di↵erence of 17.77 ppb.278

When we use a very late start time like ts = 30 µs shown in figure 23, the triangle function fits the background279

decently, however we still get a large CE di↵erence of 97.22 ppb. This is similar to what happened when we280

used the Si function.281

(a) (b)

Figure 21: Fitting the background with the triangular background with ts = 5 µs fitting 2.0 kHz away from the

minima. (a) Fitted cosine Fourier transformation, CE = -378.04 ppb (b) Recovered Frequency Distribution,

CE = -378.35 ppb.

(a) (b)

Figure 22: Fitting the background with the triangular background with ts = 15 µs fitting 2.0 kHz away from

the minima. (a) Fitted cosine Fourier transformation, CE = -378.04 ppb (b) Recovered Frequency Distribution,

CE = -360.27 ppb.
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(a) (b)

Figure 23: Fitting the background with the triangular background with ts = 30 µs fitting 2.0 kHz away from

the minima. (a) Fitted cosine Fourier transformation, CE = -378.04 ppb (b) Recovered Frequency Distribution,

CE = -280.82 ppb.

5 Monte Carlo fitting with an asymmetric frequency distribution282

We also want to test if the frequency background can be fitted using an asymmetric frequency distribution. In283

figure 24 we show how the recovered frequency distribution for the Run-1 60-hour data set is asymmetric. We284

will use the asymmetric frequency distribution shown in figure 24 which is used to generate the fast rotation285

signal with a realistic longitudinal beam profile shown in figure 25.286

This Monte Carlo also has statistical uncertainty with it which makes the cosine Fourier transformation287

have a lot of statistical fluctuations when ts is large. This is because the muon beam is completely debunched288

around the ring by 100 µs of the fast rotation signal, so skipping a large part of the fast rotation signal where289

the muon beam has not yet debunched severely limits the statistics of the cosine Fourier transform. This can290

be seen in figure 26 since when ts is 15 µs or less the cosine Fourier transformation is smooth, but for larger291

values of ts there are large statistical fluctuations.292

We are now using an asymmetric frequency distribution, so we do not optimize for t0 for each values of ts.293

We instead find t0 once for ts = 4 µs and then fix the value.294
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(a) (b)

Figure 24: (a) This is the recovered frequency distribution of the Run-1 60-hour data set (b) a similarly

asymmetric frequency distribution to be used in a Monte Carlo simulation.

(a) (b)

(c) (d)

Figure 25: A fast rotation signal generated using a Monte Carlo simulation [4]. Four time intervals are shown:

(a) 0-400 µs, (b) 10-100 µs, (c)10-30 µs, (d) 10-11 µs.
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(a) (b) (c)

(d) (e) (f)

Figure 26: cosine Fourier transformation of the Monte Carlo simulation from figure 25 using a fixed value of

t0 and di↵erent values of ts. Six start times are shown: (a) 5 µs, (b) 10 µs, (c) 15 µs, (d) 20 µs, (e) 25 µs,

(f) 30 µs.

5.1 Fit comparison295

We show in figure 27 how the background can be fitted for using any of the fit functions for ts = 5 µs. When we296

use a larger start time like ts = 15 µs shown in figure 28, the polynomial can no longer fit the background since297

it is highly non-linear and no longer takes a polynomial form. The sinc function is also ine↵ective at fitting the298

background because approximating the frequency distribution to be a delta function is no longer valid. For ts =299

25 µs shown in figure 29, the erfi and the Si functions can no longer be fitted to the background either since the300

approximation that the background is a Gaussian or a step function is no longer valid since neither a Gaussian301

or a step function can account for asymmetries. We see in figure 30 that the triangular background fit, on the302

other hand, can fitted to the background all the way up to ts = 30 µs since the triangular background can303

account for asymmetries in the frequency distribution. For ts = 30 µs, however, large statistical fluctuations304

limit the ability to reasonably recover the complete frequency distribution. While the background can be fitted305

decently, we show in the next section how the recovered E-field cannot be properly recovered.306
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(a) (b) (c)

(d) (e)

Figure 27: Fitting the frequency background 1.5 kHz away from the minima with ts = 5 µs. The five fit

functions are shown: (a) erfi, (b) Si, (c) triangle, (d) sinc, (e) poly.

(a) (b) (c)

(d) (e)

Figure 28: Fitting the frequency background 1.5 kHz away from the minima with ts = 15 µs. The five fit

functions are shown: (a) erfi, (b) Si, (c) triangle, (d) sinc, (e) poly
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(a) (b) (c)

(d) (e)

Figure 29: Fitting the frequency background 1.5 kHz away from the minima with ts = 25 µs. The five fit

functions are shown: (a) erfi, (b) Si, (c) triangle, (d) sinc, (e) poly.

(a) (b) (c)

(d) (e)

Figure 30: Fitting the frequency background 1.5 kHz away from the minima with ts = 30 µs. The five fit

functions are shown: (a) erfi, (b) Si, (c) triangle, (d) sinc, (e) poly.
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5.2 E-field comparison307

We showed in the previous section how the background can be fitted for di↵erent start times. In figure 31 we308

show how the di↵erence in the recovered E-field and the actual E-field corrections change with increasing values309

of ts.310

The polynomial fit can recover the E-field correction up to about 10 µs before it can no longer be fitted to311

the background. The sinc fit is valid for about 13 µs. The erfi and Si fits are valid up to about 23 µs before312

they completely break down. The triangular fit we can see has an E-field di↵erence of about 200 ppb by 30 µs313

which is due to the large statistical uncertainty of the Monte Carlo simulation for this large value of ts.314

This means that all of the fit functions are valid for ts of up to almost 10 µs for a realistic Monte Carlo315

allowing the beam-line positron contamination of the muon beam to be skipped. With higher statistics and316

using the full Fourier method, the triangular frequency distribution may be fitted to the background all the317

way up to 30 µs allowing us to skip scraping entirely. We can confidently recover the frequency distribution for318

ts = 25 µs and the e↵ects of scraping is probably negligible between 25 and 30 µs since there is more scraping319

in the beginning of the fast rotation signal.320

(a) (b) (c)

(d) (e)

Figure 31: The di↵erence in the recovered and actual E-field correction vs start time. Five di↵erent fit functions

are used: (a) erfi, (b) Si, (c) triangle, (d) sinc, (e) poly.
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Figure 32: The di↵erence in the recovered and actual E-field correction vs start time with all 5 di↵erent fitting

functions.

6 Conclusion of background fit method321

We derived the analytic form of the frequency background for delta function, step function, Gaussian, and322

triangular frequency distributions, and we used these equations to fit the background and subtract it from the323

cosine Fourier transformation to obtain the corrected frequency distribution. Using the analytic form of the324

Gaussian, we were able to correct for the missing time all the way up to ts = 30 µs for a Monte Carlo fast325

rotation signal with Gaussian frequency distribution succeeding in the goal of skipping scraping.326

When we use a more realistic asymmetric frequency distribution with statistical fluctuations for the Monte327

Carlo, we were able to use the analytic form of a triangular frequency distribution to fit the background decently328

all the way up to ts = 30 µs. At this late start time the frequency distribution cannot be accurately recovered329

still mostly because of the statistical uncertainty of the Monte Carlo fast rotation signal. We can confidently330

confidently recover the frequency distributions values of ts as large as 25 µs allowing us to skip almost all of331

scraping since scraping is probably negligible between 25 and 30 µs.332

To see the background being fitted using the full Fourier method [1] including estimations of statistical and333

systematic uncertainty on real data sets refer to [6],[7],[8],[9], and Monte Carlo data sets [10]. When we use the334

full Fourier method we are able to fit the background even more accurately.335

7 Integral approach to the frequency background336

We showed in previous sections that the frequency background can removed by fitting for the background and337

then subtracting it out to obtain the real frequency distribution. An alternative approach to this method is to338

directly calculate the background by plugging the frequency into equation (2).339

7.1 Lifting the frequency distribution340

This method is what is used by [5]. The dilemma with this approach is that to calculate the background, we341

must know the complete frequency distribution, and our goal is to find the complete frequency distribution in342

the first place. We get around this by using an approximate frequency distribution to plug into our background343
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equation. We take the normalization of the background to be arbitrary, and we also add an additive term to344

get the following form for the background:345

�(!) = A

Z !+

!�
S̃(!0)sin[(! � !0)(ts � t0)]

! � !0 d!0+B, (25)

where we optimize the parameters A and B to fit the background. The additive term B will end up being346

very small and we only include it since it is used in [5]. Since we do not have the real frequency distribution,347

S̃(!) is an approximate frequency distribution. The approximate frequency distribution is chosen by looking348

at the two minima of the cosine Fourier transformation which will be located on each side of the maximum of349

the cosine Fourier transformation. The values which are between the minima are considered to be the signal,350

so we take the average of the minima’s bin contents and then add this to the cosine Fourier transformation in351

order to lift the distribution up to the x-axis. All points outside the minima are set to 0. This works for small352

values of ts when the signal is much larger than the background, however we know that for large values of ts353

the signal and background completely merge.354

Figure 33 (a) shows the cosine Fourier transform with vertical lines at the minima. The cosine Fourier355

transformation is lifted up to the x-axis and the frequency bins outside the minima set to zero which is shown in356

figure 33 (b). The background is calculated numerically using equation (25) with S̃(!) being the approximated357

frequency distribution shown in (b).358

We see in (c) that the background of the cosine Fourier transformation fits our numerically calculated359

background well for this small value of ts. In (c) the comparison of the recovered and simulated frequency360

distribution is shown. The two have only a small 3.43 ppb di↵erence. In figure 34 we see that for ts = 8 µs the361

integral method no longer matches the background well and we get a E-field di↵erence of 18.89 ppb. We can362

see in (b) that part of the frequency distribution is in the negative.363
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(a) (b)

(c) (d)

Figure 33: Integral method for ts = 4 µs. (a) The cosine Fourier transformation of the fast rotation signal

with the vertical lines showing the minima, (b) The approximated frequency distribution found by lifting the

cosine Fourier transformation, (c) The cosine Fourier transformation with the calculated background, (d) A

comparison of the recovered and simulated frequency distributions. A recovered E-field correction of -374.61 ppb

and simulated value of -378.04 ppb.
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(a) (b)

Figure 34: Integral method for ts = 8 µs. (a) The cosine Fourier transformation with the calculated background,

(b) A comparison of the recovered and simulated frequency distributions. A recovered E-field correction of

-350.15 ppb and simulated value of -378.04 ppb.

7.2 Iteratively approximating the frequency364

In the last section we use an approximate frequency distribution to plug into equation (25) for the background.365

We can use an iterative process with each iteration using the corrected frequency distribution found in the366

previous iteration as the approximate frequency distribution to plug into the equation. We always add the367

correction to the original cosine Fourier transformation, and then use this to as this to calculate the background368

for the next iteration.369

We need to choose S̃(!)0 which is plugged in for the first iteration of the background. We could use the370

same approximated frequency distribution we used in the last section by lifting the frequency distribution, but371

the advantage of the iterative approach is that this is not necessary because the background is self corrective.372

since the background is self corrective it does not matter much what distribution you start with. Here we373

start by plugging in the actual cosine Fourier transformation in for S̃(!)0, and we still recover the frequency374

distribution. We then define the iterative definition of the corrected frequency distribution by:375

S̃(!)i+1 = S̃(!)0 +Ai

Z !+

!�
S̃(!0)i

sin[(! � !0)(ts � t0)]

! � !0 d!0+Bi, (26)

where the constants A and B are optimized for each iteration. In figure 35 we show the first two iterations376

for calculating the background. For just one iteration when we use the cosine Fourier transformation as the377

approximate frequency distribution to calculate the background, we get a recovered CE = -384.03 ppb compared378

to the actual CE = -378.04 ppb which is 5.99 ppb apart. For iteration two we get a recovered CE = -379.22 ppb379

which is only 1.18 ppb away from the actual CE . For small values of ts the iterative process converges after380

only 3 iterations. This can be seen in figure 36 where we show the di↵erence in CE between the recovered and381

actual frequency distributions. After only 3 iterations the CE di↵erence is flat as the frequency distribution382

converges to a value.383
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(a) (b)

(c) (d)

Figure 35: Iterative integral method for ts = 4 µs. We start with the cosine Fourier transformation as an

approximate frequency distribution to find the background. Then each iteration is used as the next approx-

imate frequency distribution for calculating the background. (a) The cosine Fourier transformation and the

calculated background for iteration 1, (b) A comparison of the recovered and simulated frequency distributions

for iteration 1, (c) The cosine Fourier transformation and the calculated background for iteration 2, (d) A

comparison of the recovered and simulated frequency distributions for iteration 2.

Figure 36: This is the di↵erence between the actual and recovered E-field correction for each iteration using the

iterative integral method with ts = 4 µs. The CE di↵erence flattens after only a couple of iterations showing

the convergence of the frequency distribution.

34



For larger values of ts we need more iterations to get an accurate background. Fgure 37 shows the cosine384

Fourier transformation and the calculated background for the first 4 iterations of the background calculation.385

For large values of ts, the first two iterations of the background do not match the background much at all, but386

by the fourth iteration our calculated background has begun to converge close to the actual background of the387

cosine Fourier transformation. In figure 38 the background is shown after 100 iterations, and the calculated388

background is very close to the cosine Fourier transformation background. There is no disadvantage to using389

more iterations so 100 iterations are used even though the background converged long before 100 iterations.390

Despite our fit looking decent, the frequency distribution is not exactly recovered since it is slightly lopsided.391

We get a recovered CE = -341.98 ppb which is 36.06 ppb away from the actual E-field correction. If we compare392

the background we get in figure 38 (a) to the background obtained in figure 34 (a) we see that the background393

for the iterative method is much closer to the cosine Fourier transformation, although the recovered frequency394

distributions are similarly o↵. In figure 39 we show how the CE di↵erence does not change after just 5 iterations.395

(a) (b)

(c) (d)

Figure 37: This is the cosine Fourier transformation and the calculated background for the iterative in-

tegral method with ts = 8 µs. Four iterations are shown: (a) Iteration 1, (b) Iteration 2, (c) Iteration 3,

(d) Iteration 4.
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(a) (b)

Figure 38: This is the cosine Fourier transformation and the calculated background for the iterative integral

method with ts = 8 µs after 100 iterations. (a) The cosine Fourier transformation and the calculated background,

(b) A comparison of the recovered and simulated frequency distributions.

Figure 39: This is the di↵erence between the actual and recovered E-field correction for each iteration using

the iterative integral method with ts = 8 µs.

8 Conclusion of integration method396

The integral approach is not as e↵ective as fitting the background to the cosine Fourier transformation since it397

relies on knowledge of the frequency distribution. The goal when fitting for the background is to use a general398

enough analytic form so that the background can be fitted regardless of the form of the frequency distribution.399

The integral method is not as general since we have to figure out the form of the frequency distribution in order400

to make the correction.401

We could improve this method by using the recover the frequency distribution for ts = 4 µs ,and then use402

this as the approximate frequency distribution for higher values of ts. The iterative approach would still fail,403

however for large values of ts.404

It is possible the integral method could be developed to a point where it can compete with the fit method,405
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but as it currently stands it cannot be used to skip scraping. The integral method can still be useful however406

since it can use this method in conjunction with the fit method for ts = 4 µs as a way of checking that the407

background is properly eliminated for real data when we the real frequency distribution is unknown, and then408

use di↵erence in the recovered E-field correction between the two methods can be considered a systematic409

uncertainty of the Fourier method.410

Appendices411

A When is ts small?412

We consider ts to be small when we can Taylor expand the sin function in (3). This is possible when413

|(ts � t0)(! � !0)| ⌧ 1. The ! � !0 is only relevant where the frequency distribution S̃(!) is non-zero so414

this is approximately when the frequency is within a few standard deviations from the frequency distribution.415

If we assume that the full 5 standard deviation frequency distribution is confined within the collimator aperture,416

then ts is small when 5(ts � t0)� ⌧ 1. Values of t0 are much smaller than ts since t0 is between 0 and 150 ns417

while ts will be at least 4 µs, so we define ts to be small explicitly when 5ts� ⌧ 1. This makes it so that we418

the background can be fitted for higher values of ts when the frequency distribution has smaller width.419

For small enough values of ts, the background is approximately a parabola. We can see this in figure 40420

where we show the background for a Gaussian frequency distribution for a value of ts = 4 µs. We show explicitly421

in section 4.1 that the we can Taylor expand the background itself for small values of ts. Other forms of the422

frequency background require less approximations to be made so we can use much higher values of ts than 4 µs.423

Figure 40: Frequency background from a Gaussian frequency distribution with t0 = 0 µs and ts = 4 µs.

The vertical lines are the bounds of the collimator aperture. For this small value of ts the background is

approximately parabolic.

B Approximating the step function to be a Gaussian424

We want to show that we can use the form of the background distribution which we found in section 2.3 and 2.2425

when the frequency distribution is Gaussian or skewed Gaussian. This also includes the triangular frequency426

distribution because if the step function background can be used to approximate the Gaussian background then427

the triangular background can certainly do it too. This justifies what was shown visually in figure 7 that the428
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Gaussian, step function, and triangular frequency distributions all produce approximately the same background429

for small values of ts.430

B.1 Gaussian frequency distribution431

We start by Taylor expanding the Gaussian frequency distribution and plug into the equation for the correction432

of the cosine Fourier transformation to show that in the limit when ts is small the Gaussian frequency is has433

the same form as the step function:434

S̃(!) =
1p
2⇡�2

(1� (! � !0)2

2�2
+

(! � !0)4

8�4
+ ...). (27)

Then we can plug in the Taylor expanded series into our equation for �(!):435

�(!) =
1

⇡

Z !+

!�

1p
2⇡�2

(1� (!0 � !0)2

2�2
+

(!0 � !0)4

8�4
+ ...)

sin[(! � !0)(ts � t0)]

! � !0 d!0

=
1p

2⇡3�2

Z !+

!�
(1� (!0 � !0)2

2�2
+

(!0 � !0)4

8�4
+ ...)

sin[(! � !0)(ts � t0)]

! � !0 d!0.

(28)

When we integrate these first terms we get:436

�(!) =
1

p
2⇡3�2

h
Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))

+
(! � !0)2

2�2
Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))

+
sin[(! � !�)(ts � t0)] + (ts � t0)(! + !� � 2!0) cos[(! � !�)(ts � t0)]

2�2(ts � t0)2
�
sin[(! � !+)(ts � t0)] + (ts � t0)(! + !+ � 2!0) cos[(! � !+)(ts � t0)]

2�2(ts � t0)2

+
(! � !0)4

8�4
Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0)

+

�
(ts � t0)2[(6!2

0 � 4!0(! + 2!�) + (!2 + 2!�! + 3!2
�)]� 6

�
sin[(! � !�)(ts � t0)]

8�4(ts � t0)4

�
�
(ts � t0)2[(6!2

0 � 4!0(! + 2!+) + (!2 + 2!+! + 3!2
+)]� 6

�
sin[(! � !+)(ts � t0)]

8�4(ts � t0)4

+
(ts � t0)[(ts � t0)2

⇥
� 4!3

0 + 6!0(! + !�)� 4!0(!2 + !�! + !2
�) + !3 + !�!2 + !2

�! + !3
�
⇤
� 2! � !� + 8!0] cos[(! � !�)(ts � t0)]

8�4(ts � t0)4

�
(ts � t0)[(ts � t0)2

⇥
� 4!3

0 + 6!0(! + !+)� 4!0(!2 + !+! + !2
+) + !3 + !+!2 + !2

+! + !3
+

⇤
� 2! � !+ + 8!0] cos[(! � !+)(ts � t0)]

8�4(ts � t0)4
+...

i
.

(29)

This looks like a complicated equation for the correction, but we can make some approximations to show437

that the complicated sine and cosine terms are small compared to the Si terms. If we just look at the second438

term in the expansion:439
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�(!)2 =

Z !+

!�

(!0 � !0)2

2�2

sin[(! � !0)(ts � t0)]

! � !0 d!0 =

1

2�2

⇥
(! � !0)

2[Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))]

+
sin[(! � !�)(ts � t0)] + (ts � t0)(! + !� � 2!0) cos[(! � !�)(ts � t0)]

(ts � t0)2

� sin[(! � !+)(ts � t0)] + (ts � t0)(! + !+ � 2!0) cos[(! � !+)(ts � t0)]

(ts � t0)2
⇤
.

(30)

We make the assumption that |(! � !�)(ts � t0)| and |(! � !+)(ts � t0)| are small quantities such that440

we can invoke the small angle approximation sin(x) ⇡ x and cos(x) ⇡ 1 for |x| ⌧ 1. Then we can say that441

sin[(!�!�)(ts�t0)] ⇡ (!�!�)(ts�t0), sin[(!�!+)(ts�t0)] ⇡ (!�!+)(ts�t0) and cos[(!�!�)(ts�t0)] ⇡ 1,442

cos[(! � !+)(ts � t0)] ⇡ 1. When we make this assumption in for �(!)2, the second term in the background443

Taylor expansion, we get the following cancellation:444

�(!)2 =

Z !+

!�

(!0 � !0)2

2�2

sin[(! � !0)(ts � t0)]

! � !0 d!0 ⇡

1

2�2

⇥
(! � !0)

2[Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))]

+
(! � !�)(ts � t0) + (ts � t0)(! + !� � 2!0)

(ts � t0)2
� (! � !+)(ts � t0) + (ts � t0)(! + !+ � 2!0)

(ts � t0)2
⇤

=
1

2�2

⇥
(! � !0)

2[Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))]

+
[(! � !�) + (! + !� � 2!0)]� [(! � !+) + (! + !+ � 2!0)]

(ts � t0)

⇤

=
1

2�2

⇥
(! � !0)

2[Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))] +
2(! � !0)� 2(! � !0)

(ts � t0)

⇤

=
(! � !0)2

2�2
[Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0)),

(31)

so the sine and cosine terms have been eliminated. We also want to make sure that the Si terms do not445

cancel like the sine and cosine terms do under the small angle approximation. The Si function has a Taylor446

expansion like where Si(x) = x�x3/18+x5/600+ ... , and we can then make the approximation that Si(x) ⇡ x447

for |x| ⌧ 1.448

We can check now that under this approximation the Si terms does not cancel:449
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�(!)2 =

Z !+

!�

(!0 � !0)2

2�2

sin[(! � !0)(ts � t0)]

! � !0 d!0 ⇡ (! � !0)2

2�2
[Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))

⇡ (! � !0)2

2�2
[(! � !�)(ts � t0)� (! � !+)(ts � t0)]

=
(ts � t0)(!+ � !�)(! � !0)2

2�2
.

(32)

This term has nontrivial ! dependence in the approximation so the Si terms cannot be left out. So in the450

small angle approximation we eliminate the sine and cosine terms but leave the Si function so that:451

�(!) ⇡ 1p
2⇡3�2

⇥
Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))

+
(! � !0)2

2�2
Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))

+
(! � !0)4

8�4
Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0) + ...

⇤
.

(33)

When we group the Si terms together we get:452

�(!) =
1p

2⇡3�2
(1� (! � !0)2

2�2
+

(! � !0)4

8�4
+ ...)

⇥
Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))

⇤
, (34)

and we have recovered the Taylor series for the Gaussian so we can restore our original signal:453

�(!) =
1p

2⇡3�2
e�

(!0�!0)
2

2�2
⇥
Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))

⇤
. (35)

We have shown that for a frequency distribution S̃(!) which is Gaussian, we the correction take the following454

approximate form:455

�(!) =
1

⇡

Z !+

!�
S̃(!0)sin[(! � !0)(ts � t0)]

! � !0 d!0 ⇡ 1

⇡
S̃(!)

⇥
Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))

⇤
. (36)

This is the same form as when we used a step function as our frequency distribution, since if we plugged456

in the step function in equation 7 in for S̃(!) then we would recover the exact equation (22) for the frequency457

background found using the step function. This means we can use the step function approximation of the458

frequency distribution to fit the frequency background even for the Gaussian frequency distribution.459

B.2 Skewed Gaussian frequency distribution460

We can now try using a skewed Gaussian so that we do not have an even frequency distribution If we assume461

a skewed Gaussian frequency distribution centered at the magic frequency !0 with a standard deviation � and462

now we define the skew of the Gaussian as ↵:463
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S̃(!) =
1p
2⇡�2

e�
(!�!0)

2

2�2 [1 + erf(
↵(! � !0)p

2�
)]. (37)

Then we plug into the equation for the correction to the cosine Fourier transformation:464

�(!) =
1

⇡

Z !+

!�
S̃(!0)sin[(! � !0)(ts � t0)]

! � !0 d!0 = 1p
2⇡3�2

Z !+

!�
e�

(!0�!0)
2

2�2 [1+erf(
↵(!0 � !0)p

2�
)]
sin[(! � !0)(ts � t0)]

! � !0 d!0

=
1p

2⇡3�2

⇥ Z !+

!�
e�

(!0�!0)
2

2�2
sin[(! � !0)(ts � t0)]

! � !0 d!0+
Z !+

!�
e�

(!0�!0)
2

2�2 erf(
↵(!0 � !0)p

2�
)
sin[(! � !0)(ts � t0)]

! � !0 d!0
⇤
.

(38)

The first term we get is exactly the same term we solved for in the case of the Gaussian frequency distribution465

with our earlier approximation so we already know the answer to that and can plug in:466

�(!) ⇡ 1p
2⇡3�2

⇥
e�

(!0�!0)
2

2�2
⇥
Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))

⇤

+

Z !+

!�
e�

(!0�!0)
2

2�2 erf(
↵(!0 � !0)p

2�
)
sin[(! � !0)(ts � t0)]

! � !0 d!0
⇤

(39)

We can try and figure out what the second term by assuming that the erf function is small. The Taylor467

expansion of the erf function is as follows:468

erf(x) =
2p
⇡

1X

n=0

(�1)nx2n+1

n!(2n+ 1)
=

2p
⇡

�
x� x3

3
+

x5

10
� x7

42
+ ...

�
, (40)

and since !0 is bounded !�  !0  !+, we can say that the argument of the erf function ↵(!0�!0)p
2�

is small469

for small ↵. Therefore, when (!0�!0)
� ⇠ 1 and |↵| ⌧ 1 we can make the approximation that:470

erf[
↵(!0 � !0)p

2�
] ⇡

r
2

⇡

↵(!0 � !0)

�
. (41)

In this small skewness limit, we can plug this approximation into the equation for the correction:471

�(!) ⇡ 1p
2⇡3�2


e�

(!0�!0)
2

2�2
⇥
Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))

⇤

+

Z !+

!�
e�

(!0�!0)
2

2�2

r
2

⇡

↵(!0 � !0)

�

sin[(! � !0)(ts � t0)]

! � !0 d!0
�

⇡ 1p
2⇡3�2

e�
(!0�!0)

2

2�2
⇥
Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))

⇤

+
↵

⇡2�2

Z !+

!�
e�

(!0�!0)
2

2�2 (!0 � !0)
sin[(! � !0)(ts � t0)]

! � !0 d!0.

(42)
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We can then Taylor expand the Gaussian as we did before for the case of a Gaussian frequency distribution:472

�(!) ⇡ 1p
2⇡3�2

e�
(!0�!0)

2

2�2
⇥
Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))

⇤

+
↵

⇡2�2

Z !+

!�
e�

(!0�!0)
2

2�2 (!0 � !0)
sin[(! � !0)(ts � t0)]

! � !0 d!0

=
1p

2⇡3�2
e�

(!0�!0)
2

2�2
⇥
Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))

⇤

+
↵

⇡2�2

Z !+

!�
(1� (!0 � !0)2

2�2
+

(!0 � !0)4

8�4
+ ...)(!0 � !0)

sin[(! � !0)(ts � t0)]

! � !0 d!0

=
1p

2⇡3�2
e�

(!0�!0)
2

2�2
⇥
Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))

⇤

+
↵

⇡2�2

Z !+

!�
[(!0 � !0)�

(!0 � !0)3

2�2
+

(!0 � !0)5

8�4
+ ...]

sin[(! � !0)(ts � t0)]

! � !0 d!0

=
1p

2⇡3�2

⇥
e�

(!0�!0)
2

2�2
⇥
Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))

⇤

+
↵

⇡2�2


(!�!0)[Si((!�!�)(ts � t0))� Si((!�!+)(ts � t0)] +

cos[(! � !�)(ts � t0)]� cos[(! � !+)(ts � t0)]

(ts � t0)

+
1

2�2

h
(! � !0)

3[Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0)]

+
(! + 2!� � 3!0) sin[(! � !�)(ts � t0)]

(ts � t0)2
� (! + 2!+ � 3!0) sin[(! � !+)(ts � t0)]

(ts � t0)2

+
((ts � t0)2[3!2

0 � 3!0(!� + !) + (!2
� + !�! + !2)]� 2) cos[(! � !�)(ts � t0)]

(ts � t0)3

�
((ts � t0)2[3!2

0 � 3!0(!+ + !) + (!2
+ + !+! + !2)]� 2) cos[(! � !+)(ts � t0)]

(ts � t0)3
+ ...

�
. (43)

This equation for the correction looks complicated, but we can simplify the sine and cosine terms just473

like we did for the case of a Gaussian frequency distribution. We do this by making the assumption that474

|(! � !+)(ts � t0)| ⌧ 1 and |(! � !�)(ts � t0)| ⌧ 1. Then we can make the small angle approximation in the475

sine and cosine function like we did before to show that the sine and cosine terms are small compared to the Si476

terms. If we just look at the first term:477

�(!)1 =
↵

⇡2�2

Z !+

!�
(!0 � !0)

sin[(! � !0)(ts � t0)]

! � !0 d!0

=
↵

⇡2�2


(!�!0)[Si((!�!�)(ts�t0))�Si((!�!+)(ts�t0)]+

cos[(! � !�)(ts � t0)]� cos[(! � !+)(ts � t0)]

(ts � t0)

�
.

(44)

Then we can set cos[(! � !+)(ts � t0)] ⇡ 1 and cos[(! � !�)(ts � t0)] ⇡ 1 so that now:478
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�(!)1 =
↵

⇡2�2

Z !+

!�
!0sin[(! � !0)(ts � t0)]

! � !0 d!0

=
↵

⇡2�2


(! � !0)[Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0)] +

1� 1

(ts � t0)

�

=
↵

⇡2�2


(! � !0)[Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0)]

�
.

(45)

The first term of the expansion will be small compared to the Si terms, so we can eliminate the sine and479

cosine terms. We can then restore the Gaussian from its Taylor series:480

�(!) ⇡ 1p
2⇡3�2

e�
(!0�!0)

2

2�2
⇥
Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))

⇤

+
↵

⇡2�2

�
(! � !0)�

(! � !0)3

2�2
+

(! � !0)5

8�4
+ ...

�
[Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0)]

�

=
1p

2⇡3�2
e�

(!�!0)
2

2�2
⇥
Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))

⇤

+
↵

⇡2�2


(! � !0)e

� (!0�!0)
2

2�2 [Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0)]

�

=
� 1p

2⇡3�2
+

↵(! � !0)

⇡2�2

�
e�

(!�!0)
2

2�2
⇥
Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))

⇤
.

(46)

This is the form of the correction for small skewness |↵| ⌧ 1. Notice when ↵ = 0 then the equation for the481

correction of the Gaussian is restored. We can see that we get approximately our original frequency distribution482

times the Si terms back because of the following:483

�(!) ⇡ 1

⇡

� 1p
2⇡�2

(1 +
↵(! � !0)p

2�
)e�

(!�!0)
2

2�2
�⇥

Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))
⇤
. (47)

We recognize the first part of the equation as our original frequency distribution. If we have a frequency484

distribution S̃(!) which is some Gaussian distribution with a small amount of skewness, then we can expect to485

get a correction of approximately proportional to the distribution. This matches the results of what we got for486

the case when S̃(!) is a pure Gaussian:487

�(!) =
1

⇡

Z !+

!�
S̃(!0)sin[(! � !0)(ts � t0)]

! � !0 d!0 ⇡ 1

⇡
S̃(!)

⇥
Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))

⇤
, (48)

for |(!�!+)(ts� t0)| ⌧ 1 and |(!�!�)(ts� t0)| ⌧ 1 with skewness |↵| ⌧ 1. Like we said for the Gaussian488

frequency distribution if we make the frequency distribution into a step function with some bounds within489

the collimator aperture, then we recovered the exact result of the background for the step function frequency490

distribution. This means that even for a slightly skewed Gaussian distribution we can use the Si functions to491

approximate the background. since we know the step function and Gaussian backgrounds are almost the same,492

we can also know that a Gaussian frequency background can be used for a slightly skewed Gaussian for small493

start times.494

43



The triangular fitting function will work better for a skew Gaussian because the triangular frequency495

distribution can be asymmetric so we do not have to make the assumption that |↵| ⌧ 1. This is why the496

step function, Gaussian, and triangle frequency distributions all yield equivalent fitting for an asymmetric497

frequency distribution up to about 20 µs after which the approximation breaks down and the triangle frequency498

distribution is superior since it relies does not rely on the assumption that |↵| ⌧ 1.499

C Approximating the step function to be a Dirac delta function500

The background for a delta function frequency distribution is the same as the other frequency distributions for501

small values of ts shown in figure 7. In the last appendix B we showed that we could use the Gaussian and502

Step function backgrounds to either a Gaussian or skew-Gaussian frequency distribution when ts is small.503

Here we will show that the step function and the delta function frequency distributions also has the same504

approximate form when ts is small. This is not surprising since the delta function is a step function with infinite505

hight and infinitely small width. We also showed that the step function, Gaussian, and triangle functions are506

all similar, so in the limit where the frequency distribution is approximately symmetric and ts is small, all of507

the fit functions used are approximately equivalent.508

C.1 Spherical Bessel function509

We can approximate the Si function as a sum of spherical Bessel functions [11]:510

Si(2x) = 2x
1X

n=0

[jn(x)]
2, (49)

where jn is the nth spherical Bessel function defined by the following:511

jn(x) = (�x)n(
1

x

d

dx
)n

sin(x)

x
. (50)

The first three spherical Bessel functions of the first kind will be the following:512

j0 =
sin(x)

x
(51)

j1 =
sin(x)

x2
� cos(x)

x
(52)

j2 = (
3

x3
� 1)

sin(x)

x
� 3 cos(x)

x2
. (53)

(54)

With the assumption that our argument of the Si function |(!�!+)(ts�t0)| ⌧ 1 and |(!�!�)(ts�t0)| ⌧ 1513

then we can approximate the summation to only include the first spherical Bessel function j0 such that:514

Si(x) ⇡ xj0(x/2)
2 = x sinc(x/2)2 = 2 sin(x/2) sinc(x/2). (55)

44



C.2 sinc background approximation515

We can plug in this the approximation in equation (55) into our approximate equation for the background with516

Gaussian frequency distribution (36):517

�(!) =
1

⇡

Z !+

!�
S̃(!0)sin[(! � !0)(ts � t0)]

! � !0 d!0 ⇡ 1

⇡
S̃(!)

⇥
Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))

⇤

⇡ �2

⇡
S̃(!)

⇥
sin[

(! � !+)(ts � t0)

2
] sinc[

(! � !+)(ts � t0)

2
]� sin[

(! � !+)(ts � t0)

2
] sinc[

(! � !�)(ts � t0)

2
]
⇤
.

(56)

We can see that the correction term is proportional to a sinc but we can further simplify to:518

�(!) =
1

⇡

Z !+

!�
S̃(!0)sin[(! � !0)(ts � t0)]

! � !0 d!0 ⇡ 1

⇡
S̃(!)

⇥
Si((! � !�)(ts � t0))� Si((! � !+)(ts � t0))

⇤

⇡ � 2

⇡
S̃(!)

⇥
sin[

(! � !+)(ts � t0)

2
] sinc[

(! � !+)(ts � t0)

2
]� sin[

(! � !�)(ts � t0)

2
sinc[

(! � !�)(ts � t0)

2
].

(57)

Then when we use the exact form of the background of the step function frequency distribution (22):519

�(!) ⇡ 1

⇡

sin[(! � (!++!�)
2 ))(ts � t0)]

(! � (!++!�)
2 )

. (58)

We restrict the bounds from the collimator aperture !+ and !�, to two points inside it, denoted as !2 and520

!1, to get a generalized equation:521

�(!) ⇡ 1

⇡

sin[(! � (!2+!1)
2 ))(ts � t0)]

(! � (!2+!1)
2 )

. (59)

If our distribution is symmetric about some frequency !0 such that (!2+!1)
2 = !0 then we can rewrite the522

background to explicitly show it is a sinc function:523

�(!) ⇡ 1

⇡

sin[(! � !0)(ts � t0)]

(! � !0)
, (60)

which holds so long as |(! � !0)(ts � t0)| ⌧ 1. We can then conclude that for su�ciently small values of524

ts, we can use the sinc function to fit the background, even when the frequency distribution is Gaussian or525

skew-Gaussian, since the Si functions are approximated to be the sinc function , and we showed in section B526

that the Si function can be fitted to Gaussian or skew-Gaussian frequency distributions.527

For a highly asymmetric frequency distribution, we can fit the background of the cosine Fourier transfor-528

mation with a sinc function for at least the first 10 µ, and with Si and erfi function for at least 20 µs, but529

for greater values of ts the triangle frequency distribution is superior since it does not assume the frequency530

distribution is approximately symmetric.531
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