Momentum acceptance model

David Rubin

Cornell University

November 3, 2021

Goal:

Develop an analytic model of momentum acceptance in order to understand origin and dependencies of time-momentum correlation of captured particles

Free betatron motion

displacement $x(s) = a\sqrt{\beta}\cos(\phi(s) - \phi_0) + \eta\delta$

With continuous quads

$$\beta = \frac{R_0}{\sqrt{1-n}}, \quad \eta = \frac{R_0}{1-n}, \quad Q_x = \sqrt{1-n}$$

Betatron phase
$$\phi(s) = Q_x \frac{s}{R_0}, \quad (\rightarrow \phi_{FT} = 2\pi Q_x)$$

Then the angle of the trajectory:

$$x'(s) = \frac{d}{ds}x(s) = -a\sqrt{\beta}\sin(\phi - \phi_0)\phi' = -\frac{a}{\sqrt{\beta}}\sin(\phi - \phi_0)$$

Trajectory of injected particle

At the inflector exit $(\phi=0)$

$$x_{inf} = a\sqrt{\beta}\cos\phi_0 + \eta\delta, \quad x'_{inf} = \frac{a}{\sqrt{\beta}}\sin\phi_0$$

Write initial phase offset in terms of initial x and x'

$$x(s) = a\sqrt{\beta}(\cos(\phi - \phi_0) + \eta\delta) = a\sqrt{\beta}[\cos\phi\cos\phi_0 + \sin\phi\sin\phi_0] + \eta\delta$$
$$\Rightarrow x(s) - \eta\delta = (x_{inf} - \eta\delta)\cos\phi + \beta x'_{inf}\sin\phi$$

Trajectory in terms of initial conditions and betatron phase

Invariant amplitude

The betatron amplitude
$$a = \frac{1}{\sqrt{\beta}} [(x - \eta \delta)^2 + (\beta x')^2]^{1/2}$$

The betatron amplitude on exit from the inflector

$$a_0 = \frac{1}{\sqrt{\beta}} [(x_{inf} - \eta \delta)^2 + (\beta x'_{inf})^2]^{1/2}$$

Kicker

At the kicker $\phi(s)=\phi_k$

Displacement and angle at the kicker

$$x_{k} = (x_{inf} - \eta\delta)\cos\phi_{k} + \beta x'_{inf}\sin\phi_{k} + \eta\delta$$
$$x'_{k} = -\frac{1}{\beta}(x_{inf} - \eta\delta)\sin\phi_{k} + x'_{inf}\cos\phi_{k}$$

Immediately beyond the kick (imagine an infinitesimally thin kicker)

$$x_{k+} = x_k$$
$$x'_{k+} = x'_k + \theta_k$$

$$x_{k+} = (x_{inf} - \eta\delta)\cos\phi_k + \beta x'_{inf}\sin\phi_k + \eta\delta$$

$$x'_{k+} = -\frac{1}{\beta}(x_{inf} - \eta\delta)\sin\phi_k + x'_{inf}\cos\phi_k + \theta_k$$

3-Nov-2021

Betatron amplitude beyond the kicker

$$a_{k+} = \frac{1}{\sqrt{\beta}} [(x_{k+} - \eta \delta)^2 + \beta^2 (x'_{k+})^2]^{1/2}$$

$$a_{k+} = \left[a_0^2 + \beta \left(\theta_k^2 + 2\theta_k \left(-\frac{1}{\beta}(x_{inf} - \eta\delta)\sin\phi_k + x'_{inf}\cos\phi_k\right)\right)\right]^{1/2}$$

The amplitude is a function of
$$a(x_{inf},x_{inf}^{\prime},\phi_k, heta_k,\delta)$$

The kick and the kick phase can be chosen such that $a_{k+} = 0$

If $\ x_{inf}'=0$ and $\phi_k=\pi/2$, the amplitude beyond the kicker is zero if

$$\theta_k^0 = \frac{x_{inf} - \eta \delta}{\beta}$$

If $x_{inf}' \neq 0$, the kick that minimizes amplitude is always greater than θ_k^0 D. Rubin

Capture

Beyond the kicker

$$x(s) = \sqrt{\beta}a_{k+}\cos(\phi - \phi_0) + \eta\delta$$

The muon is captured if

-A < x < A

Where A is the collimator aperture (A = 45 mm)

$$x < a_{k+}\sqrt{\beta} + \eta\delta < A$$
$$x > -a_{k+}\sqrt{\beta} + \eta\delta > -A$$

The momentum acceptance for amplitude $a(x_{inf}, x'_{inf}, \phi_k, \theta_k, \delta)$ is

$$-A + a_{k+}\sqrt{\beta} < \eta\delta < A - a_{k+}\sqrt{\beta}$$

3-Nov-2021

Momentum acceptance

$$-A + a_{k+}\sqrt{\beta} < \eta\delta < A - a_{k+}\sqrt{\beta}$$

(remember that amplitude a_{k+} depends on momentum)

injection angle reduces momentum acceptance

(Here
$$\overline{ heta_k} = heta_k$$
 and $\overline{x_{inf}'} = x_{inf}'$)

Injection angle
$$x_{inf}' = 0$$

The minimum kick captures $0 \leq \eta \delta \leq A$ momenta in the range

The maximum kick captures $\ -A < \eta \delta \leq 0$ momenta in the range

Injection angle $x'_{inf} = -2.5 \text{ mrad}$

Injection angle shrinks momentum acceptance

Our inequality gives us the momentum acceptance as a function of kick

0 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 Fraction momentum offset [%]

Bigger kick Time momentum correlation increases with higher kicker field. ծղ [mm] B_{peak} [G] = 264 x_{inf} [mm] = 77.0 -15 $x'_{inf} [mr] = 0.00$ $\sigma_{p}^{inj} [\%] = 0.8$ $\sigma_{\theta}^{inj} [mr] = 0.0$ -30 <r> [mm] = 8.35 Fraction stored [%] =25.7 $\sigma_{\rm r}$ [mm] = 13.11 multi kick turns =0 <δη> σ(δη) B_{kicker} intensity distributed kick = F Pulse length [ns] = 145.0-45 time [ns] ջղ [mm] Field index = 0 B_{peak} =264 G $\phi_k = \pi/2, \quad x'_{inf} = 0$ -5 -10

time [ns]

B [G]

Finite injection angle decreases momentum acceptance (and correlation)

Multiple kicks

Inequality that defines momentum bite is generalized to include kicks on multiple turns with the replacement

$$\overline{x'_{inf}} = x'_{inf} + \sum_{n} \theta_k^n \cos(2\pi\nu[\frac{1}{4} + n])$$
$$\overline{\theta_k} = \sum_{n} \theta_k^n \sin(2\pi\nu[\frac{1}{4} + n])$$

D. Rubin

Extended kicker pulse alters momentum time correlation

Field index = 0 B_{peak} =204 G

Sum kicks on first 9 passes through kicker

 $\phi_k = \pi/2, \quad x'_{inf} = 0$

Assumes no collimation for first 9 turns

Multiple kicks and finite injection angle

Field index = 0 B_{peak} =204 G Sum kicks on first 9 passes through kicker

$$x'_{inf} = -2.5 \text{ mrad}$$

Distributed kick

The kicker extends over nearly 5 meters.

Model the extended kick by replacing the single kick with 6 kicks each with 1/6 strength and located in the middle of the first and second half of each kicker

Field index = 0 B_{peak} =204 G

$$x_{inf}' = 0$$

 $i=1\dots 6$ kicks at

$$\phi_k^i = 2\pi Q_x \frac{s_i}{R_0}$$

where s_i are the locations of the kicks

Approximations and limitations

The model assumes

- Continuous quads
- Uniform kicker field and *infinite aperture*
- Continuous collimation

=> Beginning after the last kick in the sum

Kicker field is not uniform across the aperture

whereas the model assumes the kick is independent of displacement

The kickers have a finite aperture

Kicker aperture

Because of the finite kicker aperture,

the model will overestimate acceptance of high momentum muons.

Conclusions:

- Width of accepted momentum bite is nearly independent of kick (as long as the kick is above threshold)
- Centroid of the accepted momentum bite decreases with increasing kick
- Accepted momentum bite narrows with increasing injection angle
- The kicker pulse extends over multiple turns. The effect of the multiple kicks is to 'flatten' the pulse and reduce the dependence of momentum on time. So it is important to get the details right in simulations
- Finite kicker aperture reduces acceptance of high momentum particles.
- Details of collimation are important as they determine impact of secondary ... kicks

