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Pitch and Efield Systematics

Pitch

Our unperturbed system is a muon precessing in a uniform magnetic field with zero electric field. We
use a cylindrical coordinate system where B = Bẑ. The rate of change of the polarization with respect
to the muon velocity is described by Jackson 11.171
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Our trial solution for time dependence of the polarization in the ρ, φ plane is s = |s|(cosωatρ̂− sinωatφ̂)

where in the unperturbed system β̂ = φ̂. We find that

s⊥ = s− (β̂ · s) · β̂ = |s| cosωatρ̂

and
β̂ · s = −|s| sinωat

Substitution into 1 with the above assumptions gives us

ωa =
e

mc
Baµ

So far so good. We note that the component of the polarization vector in the ρ− φ plane rotates about
the z-axis. The component perpendicular to that plane is fixed. And if there happens to be a component
of velocity that is parallel to the magnetic field, the polarization vector will continue rotating about the
z-axis, confined to the ρ− φ plane.

Now we consider the effect of perturbing the system so that the z-component of the velocity, β̂ is
oscillating in the electrostatic field of the quadrupoles. That is

β̂ = cosψ(t)φ̂ + sinψ(t)ẑ

where ψ(t) is the angle of the trajectory with respect to the ρ − φ plane. If we suppose for a moment
that there is no magnetic field, the muon will execute betatron oscillations in the focusing field of the
quadrupoles. The orientation of the polarization of the magic momentum muon with respect to the
velocity is frozen. Namely,

d

dt
(β̂ · s) = 0.

Evidently
s = |s|

Ä
[cosψ(t)φ̂ + sinψ(t)ẑ] sinα+ ρ̂ cosα

ä
(2)

where α is some arbitrary time independent angle. Then as required

d

dt

Ä
β̂ · s
ä

=
d

dt
(|s| sinα) = 0

The spin vector is frozen and follows the velocity vector identically.
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Next restore the uniform and time independent magnetic field and assume ψ(t) = ψ0 cosωpt. Let’s
imagine that at the peak of the betatron oscillation, where the velocity is perpendicular to the magnetic
field, (β̂ ·B = 0), that the polarization s is in the ρ− φ plane. If the E-field dominates (ωp � ωa) then
as the pitch angle increases, the polarization will evolve a z-component that follows the z-component of
velocity. If the magnetic field dominates (ωa � ωp), the polarization will be fixed in the ρ− φ plane. If
ωp � ωa, the z-component of polarization will follow the z-component of velocity. More generally, in the
ωp � ωa limit, the effect of the magnetic field is that the z-component of the polarization lags (or leads)
the z-component of the velocity. If ωp � ωa the plane of the polarization vector will oscillate about the
ρ̂ direction. We generalize the expression for the spin vector (Equation 2) to

s = |s|
Ä
[cos(ψ(t)−∆ψ(t))φ̂ + sin(ψ(t)−∆ψ(t))ẑ] sinα+ ρ̂ cosα

ä
.

Then

s · β̂ = |s|(cos(ψ + ∆ψ) cosψ + sin(ψ + ∆ψ) sinψ) sinα = |s| cos ∆ψ sinα,

where ∆ψ(t) represents the phase offset. Substitution into Equation 1 gives

|s| d
dt

(sinα cos(∆ψ)) = − e

mc
aµB|s| cosα cosψ (3)

|s|(α̇ cosα cos(∆ψ)− sinα ˙(∆ψ) sinψ) = − e

mc
aµB|s| cosα(cosψ) (4)

where α̇, ∆̇ψ indicate derivative with respect to time. Equation 4 is generally true. Now we assume
that now α = ωat, ψ = ψ0 cosωpt, ψ0 is small and that ωp � ωa, so that ∆ψ is also small. Then
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The precession plane oscillates about the radial (ρ̂) direction many times (ωp/ωa times) per period of
rotation of polarization about ẑ. We take the average of the rapidly changing contribution (namely zero)
leaving

|s|(ωa cosωat) ∼ − e
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1

4
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In order to get some sense of ∆ψ let’s try integrating Equation 3. We assume that α = ωat which will
not be true in general, but in any event we measure an average ωa.



3

|s| d
dt
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For long times, and as long as ωa 6= 2ωp, the integral (second term in brackets on the right) sums to
zero and then ∆ψ is zero. Near resonance ωa ∼ 2ωp the approximation breaks down. Presumably the
plane of polarization is flipped about the ρ̂ direction.

Efield
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Substitution of the same unperturbed solution yields the efield correction

∆ωE = − e
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aµ(−2
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→ ∆ωE
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B

.


