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I. PRECESSION

Our unperturbed system is a muon precessing in a uniform magnetic field with zero electric field. The rate of change
of the polarization with respect to the muon velocity, the thing that we measure, is described by Jackson 11.171

d

dt
(β̂ · s) = − e

mc
s⊥ ·

[
aµβ̂ ×B +

(
aµ −

m2c2

p2

)
βE

]
(1)

We use a cylindrical coordinate system where B = Bẑ, ρ̂ is the radial direction and φ̂ is the azimuthal direction. Our

trial solution for s(t) in the ρ, φ plane is s(t) = |s|(cosωatρ̂− sinωatφ̂) where in the unperturbed system β̂ = φ̂. Then

s⊥ = s− (β̂ · s) · β̂ = |s| cosωatρ̂

and

β̂ · s = −|s| sinωat

Substitution into 1 gives us

ωa =
e

mc
Baµ (2)

It should be clear from Equation 1 that in general, only the radial component of s⊥ will contribute, since the
magnetic field is in the ẑ direction and the velocity always in the φ − z plane so that the cross product is always
exclusively in the radial direction. With that in mind we will take

s⊥ = |s| cosωatρ̂

as the form for s⊥ as long as the velocity is in the φ − z plane. That is a convenient starting point as it allows

integration of 1. For example, when β̂ = φ̂ and E = 0, we can integrate 1

ŝ · β̂ =

∫
− e

mc
aµŝ⊥ · (β̂ ×B)dt = − e

mc
aµB

sinωmt

ωm
= −ωa

sinωmt

ωm
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Recall

ŝ⊥ = ŝ− (β̂ · ŝ)β̂ = cosωatρ̂

ŝ‖ = (β̂ · ŝ)β̂ = − ωa
ωm

sinωmtβ̂

Since ŝ = ŝ⊥ + ŝ‖, and |ŝ| = 1, it follows that ŝ2
⊥ + ŝ2

‖ = cos2 ωmt+
(
ωa

ωm

)2

sinω2
mt = 1→ ωm = ωa.

II. PITCH

A. Time independent pitch

ŝ · β̂ =

∫
− e

mc
aµB cosωmt cosψdt (3)

If ψ is independent of time then

ŝ · β̂ = −ωa
sinωmt

ωm
cosψ

and evidently has sinusoidal time dependence with frequency ωm.

− sinωmt = −ωa
sinωmt

ωm
cosψdt

→ ωm = ωa cosψ

where ωa is defined in Equation 2 and ωm is what we measure.
We note that the component of the polarization vector in the ρ−φ plane rotates about the z-axis. The component

perpendicular to that plane is fixed. And if there happens to be a component of velocity that is parallel to the
magnetic field, the polarization vector will continue rotating about the z-axis, confined to the ρ− φ plane.

B. Pitching motion

Now suppose the muon is executing vertical betatron oscillations in the φ− z plane. Then

β̂ = cosψ(t)φ̂+ sinψ(t)ẑ (4)

where ψ(t) is the angle of the trajectory with respect to the ρ − φ plane. (See Section VI for more discussion of
Equation 4.) If we imagine for a moment that there is no magnetic field, the muon will execute betatron oscillations
in the focusing field of the quadrupoles. At the magic momentum, absent a magnetic field, the orientation of the
polarization of the magic momentum muon with respect to the velocity is frozen. That is because

d

dt
(β̂ · s) = 0.

Next restore the uniform and time independent magnetic field and assume free betatron oscillations so that ψ(t) =

ψ0 cosωpt. Let’s imagine that at time t, ψ(t) = 0 (β̂ · B = 0), and the polarization s is in the ρ − φ plane. If the
E-field dominates (ωp � ωa) then as the pitch angle increases, the polarization will evolve a z-component that follows
the z-component of velocity. If the magnetic field dominates (ωa � ωp), the polarization will be fixed in the ρ − φ
plane. More generally, in the regime where ωp � ωa, the effect of the magnetic field is that the z-component of the
polarization lags (or leads) the z-component of the velocity. The plane of the polarization vector will oscillate about
the ρ̂ axis. Returning to Equation 3

ŝ · β̂ = ωa

∫
cosωmt cosψ(t)dt (5)
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In our experiment the frequency of vertical oscillations is much greater than the precession frequency, and since
we measure the average precession frequency, rather than any component with the time dependence of the vertical
oscillations, we average over that shorter time scale. Then

ŝ · β̂ = −ωa
∫

cosωmt〈cosψ(t)〉dt

− sinωmt = −ωa
sinωmt

ωm
〈cosψ(t)〉dt

and where |ψ| � 1,

sinωmt = ωa
sinωmt

ωm
(1− 1

2
〈ψ2〉)

→ ωm = ωa(1− 1

2
〈ψ2〉) (6)

(7)

By averaging over the pitching time scale, we are ignoring the z-component of polarization that lags or leads the
z-component of velocity. We can determine this component iteratively. For our first iteration we assume that
s⊥ = |s| cosωmtρ̂ as before, so that at t = 0 the polarization is initially in the ρ̂ direction. Substitute the explict form
for ψ(t) into Equation 5, expand about small |ψ| and integrate

ŝ · β̂ = −ωa
∫

cosωmt(1−
1

4
ψ2

0(1 + cos 2ωpt))dt

= −ωa
[

sinωmt

ωm
(1− 1

4
ψ2

0)− 1

8
ψ2

0

(
sin(ωm + 2ωp)t

ωm + 2ωp
+

sin(ωm − 2ωp)t

ωm − 2ωp

)]
(8)

We have used 〈ψ2〉 = 〈(ψ0 cosωpt)
2〉 = 1

2ψ
2
0 so that ωm = ωa(1 − 1

4ψ
2
0) equivalent to Equation 6. Note that as

anticipated, the second term in Equation 8 averages to zero on the pitching time scale.
The contribution of the pitching motion to the average precession frequency is

∆ωpitch
ωa

= Cp = −1

4
ψ2

0

C. Measurement

The vertical betatron pitching motion, assuming linear fields and continuous quadrupoles, is characterized by

y = a
√
βz sin(ωpt)

ψ =
a√
βz

cos(ωpt) = ψ0 cosωpt

Then

ψ2
0 = 2〈y2〉/β2

z = 2
n

R2
0

〈y2〉

and

〈Cp〉 = −n
2

〈y2〉
R2

0

where βz = R0/n

D. High frequency component

Equation 8 gives ŝ · β̂ = 1
β (szβz + sφβφ). We argue above that at the magic momentum, and when ωp �

ωa, the component of the spin vector in the z-direction will simply follow the z-component of velocity. With that
approximation, the polarization

s0 = |s|[cosωatρ̂− sinωat(cosψφ̂+ sinψẑ)] (9)
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That is, the polarization vector is rotating about a comoving axis (z′), that is parallel to β̂ × ρ̂. Then we can write

β̂zsz = βzsz0 + ∆[βzsz] (10)

where

β̂zsz0 =
βz
β
sz0 = (ψ0 cosωpt)[(sinωat) sin(ψ0 cosωpt)] (11)

using βz/β = ψ0 cosωpt, and ∆[βzsz] is the contribution from that part of sz that does not follow βz, namely the
high frequency part of Equation 8.

∆[βzsz] = −1

4
ψ2

0

ωa
2

(
sin(ωm + 2ωp)t

ωm + 2ωp
+

sin(ωm − 2ωp)t

ωm − 2ωp

)
(12)

Note that Equation 10 is not an exact solution since in order to calculate it we assumed that s⊥ = |s| cosωmtρ̂. The
exact solution will satisfy (s‖)2 + (s⊥)2 = |s| = 1. We can use this normalization relationship to solve for the next
order correction to s⊥, that is

s′⊥ =
(

1− (β̂ · ŝ)2
)1/2

(13)

and then substitute s′⊥ back into Equation 5 and integrate again. We can of course compute the exact time evolution
of the polarization by integrating the Thomas-BMT equation. The exact solution is compared to Equations 11 and 12
in Figure 1. At t = 0 in the simulation, the magic momentum muon is polarized in the ρ̂ direction. The intial velocity

is β = (pm/mc)(cosψφ̂ + sinψẑ) where ψ = 2 mrad. The initial coordinates are on the magic orbit. The muon is
tracked through the fields of the ring. The polarization is computed by integration of the Thomas-BMT equation.

E. Next order

We substitute ŝ · β̂ from 8 into 13 to determine the first order change in magnitude of s⊥.

s′⊥ ∼ |s|

[
cosωmt−

1

8
ψ2

0 sinωmt (stuff) +
1

2

(
ψ2
oωa
8

)2

(stuff)
2

]

Then we can use that in 1 to compute the next higher order contribution in ψ2
0

III. EFIELD

The contribution of the electric field to the precession frequency is more straightforward. Expand about the magic
momentum in Equation 1

d

dt
(β̂ · s) = − e

mc
s⊥ ·

[
aµβ̂ ×B +

(
aµ −

m2c2

p2

)
βE

]
∼ − e

mc
s⊥ ·

[
aµβ̂ ×B +

(
aµ −

m2c2

p2
m

(1− 2
∆p

pm
)

)
βE

]
∼ − e

mc
s⊥ ·

[
aµβ̂ ×B− 2aµ

∆p

pm
βE

]
With the usual substitution of s⊥ = |s| cosωmtρ̂ we have

∆ωE = − e

mc
aµ(−2

∆p

p
βEρ)

→ ∆ωE
ωa

= Ce =
−2〈∆pp βEρ〉

B
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FIG. 1: The projection of spin on the z-component of velocity. The black curve with points is from iteration of the
Thomas-BMT equation. The red line (’βzsz0’), Equation 11, is the projection of polarization onto the z-axis with
the approximation that the polarization is given by Equation 9. The purple line is the correction term (∆[βzsz]),
Equation 12. We see that our approximation is in very good agreement with the exact result. Note also that the

contribution of the z-component to the β̂ · s is at the level of a few parts per millon and that the correction ∆[βzsz]
two orders of magnitude smaller.

We can write Deltap
p = xeη, where xe is the momentum dependent displacement of the closed orbit from the magic

radius. The radial electric field is given by

Eρ = n

(
βB

R0

)
xe

so that

〈Ce〉 = −2β2n(1− n)
〈x2
e〉

R2
0

where we have used η = R0/(1− n).

IV. EXTRACTING PITCH AND EFIELDS CORRECTIONS FROM THE DIFFERENCE EQUATION

Consider the familiar expression for the difference of the precession frequency and the cyclotron frequency.

ωdiff = − e

m

[
aµB− aµ

(
γ

γ + 1

)
(β ·B)β −

(
aµ −

1

γ2 − 1

)
β ×E

c

]
(14)

In our experiment we measure the projection of the polarization onto the velocity. We measure that part of ωdiff ,
(ωa) that is perpendicular to the velocity. We are quite insensitive to rotations about the direction of motion. We

measure |ω⊥| = |β̂ × ωdiff |.
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Then in the absence of an electric field,

ωa = |ω⊥| = −
e

m
aµ|β̂ ×

[
B−

(
γ

γ + 1

)
(β ·B)β

]
|

= − e

m
aµ|β̂ ×B|

Note that the second term on the right of Equation 14 is parallel to the velocity and therefore does not contribute to
ωa.

Then it follows that

φa(T ) = − e

m
aµ

∫ T

|(β̂ ×B)|dt

where ωa = dφa

dt .

V. ELECTRIC FIELD CORRECTION FROM THE DIFFERENCE EQUATION

Consider next the contribution from the electric field to ωperp. We see that the electric field contribution is
exclusively perpendicular to the velocity. Therefore

∆ωa = ∆ω⊥ = −
(
aµ −

1

γ2 − 1

)
β ×E

c

Then

∆φa(Efield) = − e

m

(
aµ −

1

γ2 − 1

)∫ T β ×E

c
dt

where ∆ωa = dφa(Efield)
dt .

We can write equivalently

∆φa(Efield) = − e

m

(
aµ −

1

(E/m)2 − 1

)∫ T β ×E

c
dt

= − e

m

(
aµ −

m2c2

p2

)∫ T β ×E

c
dt

= − e

m

(
aµ −

m2c2

p2
m

(1− 2
∆p

pm
)

)∫ T β ×E

c
dt

= −2
e

m
aµ

∆p

pm

∫ T β ×E

c
dt

where at the magic momentum pm, aµ = m2c2

pm

2
and ∆p = p− pm.

VI. PITCHING VELOCITY

The muons oscillate vertically in the electric field of the quadrupoles. In the continuous quad approximation the
time dependence of the pitch angle is

ψ(t) = ψ0 cos(ωpt)

where ωp is the vertical betatron frequency. The momentum pφ in the azimuthal direction is constant, that is,
independent of the pitch angle ψ. The force on the muons due to the electric field of the quadrupoles is in the vertical
direction. The pitch angle is related to momenta according to pz/pφ = tanψ. Since the muon gains and loses energy

to the electric field of the quadrupole, the magnitude of the energy and velocity |β̂| will, like the z-component of the
momentum, be time dependent. We can write the azimuthal and vertical components of the velocity as

βφ =
pφ
E

βz =
pz
E



7

Then

β̂φ =
βφ

[β2
φ + β2

z ]
1
2

=
pφ/E

[p2
φ/E

2 + p2
z/E

2]
1
2

=
pφ

pφ[1 + p2
z/p

2
φ]

1
2

∼ (1− 1

2

p2
z

p2
φ

) = 1− 1

2
tan2 ψ (15)

Also

β̂z =
βz

[β2
φ + β2

z ]
1
2

=
pz/E

[p2
φ/E

2 + p2
z/E

2]
1
2

=
pz

pφ[1 + p2
z/p

2
φ]

1
2

∼ pz
pφ

(1− 1

2

p2
z

p2
φ

) = tanψ(1− 1

2
tan2 ψ) (16)

We might use this more precise form for β̂ in Equation 3 (rather than what is given in Equation 4). However, to
order ψ2 the result is the same. That is

β̂φ = 1− 1

2
tan2 ψ ∼ 1− 1

2
ψ2 ∼ cosψ

and

β̂z = tanψ(1− 1

2
tan2 ψ) ∼ sinψ

Recall that β̂ appears in the integral in the cross product with B and B = Bẑ.

β̂ ×B = β̂φB

∼ B(1− 1

2
tan2 ψ) ∼ B(1− 1

2
ψ2)

Since

cosψ ∼ 1− 1

2
ψ2,

to order ψ2, |β̂ × B| ∼ cosψ, and consistent with the approximations used throughout. That is because cosψ ∼
1− 1

2 tan2 ψ for small ψ. The near equivalence is evident in a comparsion (see Fig 2) of β derived from integration of
the equations of motion and the formula used above, namely

β̂ = cos(ψ(t))φ̂+ sin(ψ(t))ẑ

= cos(ψ0 cosωpt)φ̂+ sin(ψ0 cos(ωpt))ẑ (17)

Note that if the focusing were magnetic rather than electric, the total momentum would be constant and independent
of pitch in which case

p2
φ + p2

z = p2

p2
φ/p

2 + p2
z/p

2 = 1

→ (βφ/β)2 + (βz/β)2 = 1

But we see that for ψ � 1 the time dependence of β̂ is the same for electric and magnetic focusing. Note also that
the second order dependence of azimuthal momentum on pitch angle is typically ignored in the first order solution of
the equations of motion for the weak focusing storage ring.
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FIG. 2: βz (top) and βφ (bottom) are determined by integration of the equations of motion throught a model of the
g-2 ring with discrete quadrupoles and equivalent field index n = 0.1058. The initial coordinates of the trajectory are

on the magic orbit (ρ = 7.112 m, z = 0 and ψ = 0.002). Equation 17 is in good agreement with the ’exact’ result.
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