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Abstract

The evolution of the muon spin in the g-2 storage ring is characterized by the Thomas-BMT
equation. The equation gives the time dependence of the orientation of the muon spin on the
magnetic and electric fields and the muon velocity. That interaction can alternatively be described
by an effective Hamiltonian, and the dynamics by Schrodinger’s equation. In the following, an
effective Hamiltonian is derived for case of vertical oscillations driven by electrostatic focusing
(pitching motion), longitudinal magnetic fields, and radial magnetic fields. The formalism yields
exact solutions for the muon precession frequency in the rotating frame in the case of a fixed
pitch angle (zero electric field), and uniform radial and longitudinal fields. The effect of vertical
oscillations including electrostatic focusing is determined perturbatively, as is the effect of non

uniform longitudinal fields.
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I. INTRODUCTION

In the g-2 experiment we measure the time dependence of the projection of the muon spin
along its direction of motion, 3-s. The muon velocity (B) is determined by the Lorentz force
law, and the evolution of the spin (s) by the Thomas-BMT equation. In the Thomas-BMT
equation the interaction of the magnetic moment of the muon with the electric and magnetic
fields in the muon storage ring, appears as a torque ptesy X Beys, where p.ss is proportional
to the magnetic moment and B, ;s depends on the fields and the velocity. Alternatively, and
equivalently, the interaction can be described by a hamiltonian H = —ptess - Begy. Then the
Schrodinger equation determines the evolution of the spin. The solution to the Schrodinger
equation with Hamiltonian H is thus equivalent to the solution of the Thomas equation.
The advantage of the Hamiltonian formulation is that a) in the case of uniform electric and

magnetic fields, exact solutions exist and share a common structure, and b) in the event
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of time dependent fields for which there is no exact solution, there is a well established
procedure for finding approximate solutions, using time dependent perturbation theory.

In section II we review the quantum mechanics of a muon at rest in a time dependent mag-
netic field. Section III describes the transformation to a rotating frame. The Hamiltonian
corresponding to the dynamics of the Thomas-BMT equation is derived in V. Section VI
is devoted to analysis of the effect of vertical motion on the precession frequency, beginning
with the exact solution for fixed pitch (fixed vertical angle) and proceeding to a perturbative
evaluation for the muon oscillating in a vertically focusing electrostatic field with arbitrary
frequency. The effect of a longitudinal magnetic field on the evolution of the spin is explored
in Section VIII, with an exact solution in the case of a uniform field and perturbatively in
the case that the longitudinal field depends on azimuth. The solution for a uniform radial
field is given in Section VII, and for an off momentum muon on its closed orbit (electric field
correction) in Section IX. And just for fun we consider the evolution of the spin of a muon
experiencing electrostatic vertical focusing in the absence of a magnetic field and explore its
momentum dependence in Section X. Section XI summarizes effects due to pitch, radial and

longitudinal fields, and electric field.

II. MUON IN A TIME VARYING MAGNETIC FIELD

We will begin by reviewing the dynamics of a muon at rest in a time varying field, and
then adapt that well known formalism to a muon in motion in a fixed field[1][p. 330] (see
Griffiths Quantum Mechanics 1st edition, problem 9.7 on page 305 and section 10.1.3 page

330). The time dependence of the spin of a muon at rest in a magnetic field is given by

@ _ B
aw P

— _9¢

s-—s. The system can equivalently be described in terms of an interaction energy

where p

H = —p - B. The Hamiltonian is

h h B, B, — 1B
’H:—u-B:—ﬁ—a’-B:—ﬁ— y
2me 2 2me 2 B, +iB, —-B.

Suppose that the z-component of the magnetic field is fixed and that the magnetic field

transverse to the z-axis rotates about that axis with frequency w (see Figure 1), so that
B = B,z + B,,(cos(wt)x — sin(wt)y)
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FIG. 1: The z-component of the magnetic field is fixed. The transverse component of the

field rotates about the z-axis with frequency w

Then
ge h Bz Ba:yeth o h Wo Qeiwt (1)
2me 2 Bxye—iwt _B. 2 Qe iy,
where wy = 2~ B, and Q = ;2-B,,. The time evolution is governed by Schrodinger’s
equation.
h 0 H
1N— =
8tX X

For a spinor x(t) = (a(t),b(t)), we can write:

Q wt
zhﬁ a _ _7_1 wo' e a (2)
ot \ 2\ Qemiet b
a(t) \ i [ a(t)wo +b(t)Qe™! 3)
T2

a(t)Qe=t — b(t)wp

III. ROTATING FRAME

It is convenient to transform to a ’rotating frame’, in which the effective Hamiltonian

is independent of time. Then the Schrodinger equation (2) can be solved practically by
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inspection (See Griffiths Quantum Mechanics, 1st edition, problem 9.7, p. 305). Define

6—iwt/2 0
R =
0 eiwt/Q
Then
wo et wy 0
RHR'=R| Ri=|"
Qe @t —wy Q —w

and the Schrodinger equation 2 can be written as

11 a :_R—ll wy R a
dt \ p 2\ 0 —w b
Q
—>z’Ri “ :—1 o R @
dt \ p 210 —w b
d d 1 Q
e a —i—R a _ 1 wo R a
dt b dt \p 2\ 0 —w b
d 1 Q
AR = Zer ") =2 [ r[”
dt b b 2\ 0 —w b
zhi ? _ a :_7_1 Wy — W Q c:z
dat \ p b 2 QO —wo+w/ \b
where
a a
| =R
b b

In the rotating frame the Hamiltonian is independent of time and the characteristic frequen-

cies are simply the eigenvalues.

WE = ++/(wo — w)2 + Q2

We next find the eigenvectors, take appropriate linear combinations and transform from
the rotating frame back to the fixed frame. See Appendix XIIB for details of the linear
algebra.

(Alternatively see Appendix XITA for direct solution of the coupled differential equa-
tions 3)



IV. OBSERVABLES AND POLARIZATION

By whichever method we choose, we find the solution to 2

@ (COS( ,t/2> e WO) sm(w t/2)> e's! ZQ sin(w't/2)e’2?
Y(t) = = o )
b o Sln( /t/2) (COS( /t/2) w—OSID( /t/2)) 2t
(4)
where
W' = [(wo — w)?+ 92]1/2 (5)

and ag and by define the initial spin state. The polarization (the observable),

(@b +b"a)x + —i(a’d — b"a)y + (Ja(t)* — [b(t)[*)2) (6)

N | —

1
=S Wlo )=

Since

o 0 »
a* = {(cos(w’t/Q) + z(ww—/wo) sin(w’t/2)> ag + ZJ—/ sin(w't/Q)bé} e "2

b i(w — wo)
w/

{—i}—? sin(w't/2)ag + (COS(w’t/2) + sin(w’t/Z)) bo} e e

we can write

1
a*b = <a3b0 COS2(w/t/2) — F[(w — wo)Qagbo — Q2b8a0 —(w— wO)Q(|a0|2 — |b0]2)] Sinz(w't/Q)

+ %Cos(w’t/Q) sin(w't/2) (ag((w —wo)bo — Qao) — bo((wo — w)ag — Qb*))} -

If the intial state is ag = by = \/LE (an eigenket of 0,), the intial state polarization is s, = 1.

Then

0 = % (0082(w’t/2) - %[(w ) — 02 sin2(w't/2)
+ ﬁ cos(w't/2) sin(w't/2) (((w — wp) — Q) — ((wo — w) — Q))) et

= % (COSQ(w’t/Q) - u%[(w — W0)2 _ QQ] sinQ(w/t/Q) + %COS(w’t/Q) Sin(w’t/Q) (w B wo)) —



The polarization
(8z) = (cosz(w’t/2) — %[(w —wp)? — QF sin2(w't/2)) cos(wt) + (% cos(w't/2) sin(w't/2)(w — w0)> sin(«
(8y) = — (cosQ(w't/Z) - %[(w —wp)? — Q7] sin2(w’t/2)) sin(wt) + (% cos(w't/2) sin(w't/2)(w — wo)) COS

(5.) = 5 al? ) = 5 [cos?(w’t/z) P Tt G ut) (cos?(w't/z) + ! sin?(oi

— W)
- w sin?(w't/2)
w

w—wy— Q)

w'?

V. EFFECTIVE HAMILTONIAN FOR THOMAS EQUATION

Of course we are not interested in the precession of muon at rest in a time varying
magnetic field, but rather a muon in motion in a fixed field, as described by the Thomas-

BMT|[2][p. 559] equation.

ds e 1 v g v
- = — -B—-a,——(B3-B)B— (22— —— E
dt mcsx (a”+7) a“v—i—l(ﬁ B (2 ’y—i—l)ﬂx } (®)
or equivalently
H=—pn-B

where i = s and B is an effective magnetic field,

_ Le_ . 2 (5. (97
B = (au‘i‘,y)B a“’y—i—l(ﬁ B)3 (2 7+1>ﬂXE1

VI. HAMILTONIAN FOR A MUON WITH A VERTICAL COMPONENT OF VE-
LOCITY

A. Fixed pitch angle (spiral)

Consider a muon in a uniform magnetic field with a component of velocity parallel to
the field. We work in a fixed cartesian coordinate system with B = B.z. (Our coordinate
system is shown in Figure 2.) According to the Lorentz force law[2][p. 559]

B _ e

=B+ xB - B8 E)



FIG. 2: The positive muon is injected at

examples/example10/fixed_pitch/spiral.gnu

Wed Feb 24 09:39:54 2021

the top of the ring and rotates in the
clockwise direction. The magnetic field

is out of the page in the positive FIG. 3: Muon trajectory in a uniform

z-direction. magnetic field.

the particle trajectory is a clockwise spiral (see Figure 3), with velocity

B = Buy(cos(wt)x — sin(wt)y) + B.2.

(For the time being we assume that E = 0.)
Then the effective magnetic field is

B = [(au + %)BZZ - auy 1 1(BZBZ) (B22 + Byy(coswtx — sin wty))]

5 [ ( (o, + % )0, T 53> 5 — <Q#L525xy(cos(wt)fc - sin(wt)f’ﬂ

a,——
v+1 v+1

Define
i 2
= —B, - —a,—
0 [aﬁv fy+1 ]
€ 9
Q=-—8, —— 6.0,
c {”7+15ﬁy]
eB,
w:wC:
mery

and our Hamiltonian assumes the form of Equation 1,

h h w Qeiwt
(& ) B 0

mc 2 2\ Qe—iwt — W
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FIG. 4: Polarization of a muon following a circular trajectory, 5, = 0. The analytic

solution (Equations 7) is on the top, and simulation (integration of the equations of

In the rotating frame

motion and the BMT equation) at the bottom.

h

Hrot = -3

2

Wo

— W

Q

Q

—wy + W

and the eigenvalue is the precession frequency in the rotating frame. Now we simply substi-

tute 9 and 10 into Equations 7, to get the time dependence of the polarization.

The projection of the spin onto the direction of motion is given by

16 5 = (cost(wt/2) = Tl = wal? = sn(1/2) ) oy (cosior) + sin () + 5. 2200

(w—wp)

= (cos2(w’t/2) - u%[(w —wp)? — sin2(w’t/2)) By + BZQ(W;—;O)Q sin?(w't/2)

1
2

= _ (1 + cos(w't) — %[(a) —wp)? — Q?)(1 — cos w’t)) Bey + B2

w'?

(W — wp)$2

(1 — cos(w't))

The thing we measure is the time rate of change of the projection of the polarization on the

10

sin®(w



1.5

E

Time [us]

FIG. 5: Polarization of a muon following a spiraling trajectory, 5, = 0.4. The analytic
solution (Equations 7) is on the top, and simulation (integration of the equations of

motion and the BMT equation) at bottom.

direction of motion

In general ,3 -s oscillates with frequency w’, the eigenvalue of the Hamiltonian in the rotating

frame.

11



Finally, we use 9,10,11 to evaluate w’

B 2
w/? _ (WO o CU)2 + QQ — <6_)

mc

v v+1 Y

(o208 IV (0 e 6)1/2)] (14

_ (1+7(1—63))2+7253(52—ﬁ§)) :w2<(1+2v(1—53)+7( —BE)QH%ZQ(BQ—BS))

(v+1)? (v +1)2

_ (1+2’y 1—ﬁ2)+7(1—252)+v25252)
(y+1)?
_ (1+271—ﬁ2)+7( —263))+53(’V2—1))
(vy+1)?
2 (1+271—62)+7(1—52))—ﬁ3)
(v +1)?
<1+'y 52)”2>
v+1
W(1— 1/2

w' is the precession frequency measured in the rotating frame, the familiar pitch correction.

It turns out that the spiral trajectory corresponding to a fixed pitch can be transformed
by a Lorentz boost (,) into a circular trajectory with zero pitch. Frequencies measured in
the two frames are related by the time dilation factor v = \/1—763 . The result is of course
equivalent to 15. See XIID for details.

For 8, < fB,and f ~ 1, B, = ¢ and ' = w,(1 — —2/12) where 9 is the pitch angle, in good
agreement with Farley[3], Silenko[4], Kim[5], Miller[6] and others.

B. Equations of motion in a uniform magnetic field and vertically focusing electric

field.

The next step is to include the electric field and vertical oscillations. In order to construct
the effective magnetic field in our Hamiltonian we need to solve the equations of motion to
determine the velocity. For motion in electromagnetic fields

a8 _
dt  ~yme

[E+B8xB—-p(8-E) (16)

12
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FIG. 6: Projection of the polarization onto the direction of motion for a muon following
circular (8, = 0 and spiraling 8, = 0.4 trajctories. The analytic solution (Equation 13) is
on the top, and simulation (integration of the equations of motion and the BMT equation)

at the bottom.

The electric and magnetic fields are both vertical (z-direction). With that stipulation 16

reduces to the coupled differential equations

dg.

prai 7—mcE [(1-62) (17)
dfs _

T = (8,B. — B.B.E:) (18)
4By _ B E 19

The tranverse momentum (momentum in the x-y plane) is conserved so that

% =7()Bay(t) = ~° 0 = constant
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(Forces in the transverse plane are always perpendicular to the velocity.) The total momen-

tum depends on the z-component of velocity.

By = 80,20 = [1 - 5, + )]
v 1-59,
— 82,187 = 8%, (1 — (8%, + %)
=30, (1 -2
S =g (20)

and in an obvious notation, v = v,7,. With that handy relationship we rewrite the first of

the three coupled equations as

dt— me " 0
1 — B2)3/2
_ e Ez< B2) (21)
me Yo
In the limit where §, < 1, and assuming F, = —kz (vertically focusing linear restoring
force and continuous quads)
dp. e
dt Yome
1d?
N
c dt? Yomc
20 .
— 2 = 29 COSWyt, [, = ——w, sinw,t
c
where
ek
Wy =] ——
Yo



We compute the next higher order term by substitution of the zeroth order solution into 21

and integrating. To order (2,
3/2

k 2
B, = — =0 /coswvt (1 — (@wv> sin’ wvt) dt
Yomc ¢
k 3 2
Bz ~ — "o /COSth (1 - = <@wv) Sin2 th) dt
Yomce 2\c

ekzy 1 1 /2 2
~ — 0~ (sin Wyt — = (—va> sin® wyt>

Yo C Wy, 2\c¢c
20 . 20 .
~ —wy,— sinwyt[cos ( | —w, | sinw,t )]
c c

~ — 7 sinw,t[cos (87 sinwyt)]

~ —[sin(BY sinw,t)][cos (B2 sinwyt)]

~ —% sin (2082 sinw,t)] ~ — sin(BY sinw,t) (22)
Using 20 we write
Bry = (1= B2)2By, ~ By, cos(B sinwyt) (23)
and to second order in the small parameter 32,
8= ﬂgy COS(BS sin w,t)(cos(wt)x — sin(wt)y) — sin(ﬁg sin w,t)z (24)

which is confirmed by substitution into Equations 17,18 and 19. See section XII C for details.

C. Hamiltonian for uniform magnetic field and vertically focusing electric field

The electric field appears in the BMT equation in the cross product with velocity.

B x E = [,,(t)(— sin(wt)x — cos(wt))y)E.(t)
= By,7- " (t) (sin(wt)x + cos(wt))y)kzo(cos wyt)

Including the electric field our effective magnetic field B becomes

1
B = [(au + —)B.z — aHL(ﬁZBz) (822 + Buy(t)(coswtx — sinwty))
Y v+1
1
_ <au -+ ﬁ) By (t) E(t)(— sin(wt)x — cos(wt))y)]
=B, || (a, + l) a2 ) s (a,— L B.8, (cos(wt)x — sin(wt)y

I DL Py y

) ( - ﬁ) By (1) B (1)(— sin (@)% — cos(ewt))y)

15



Then

H=—p B
_n wolt) (R0 + ) -
2\ (Q(t) — iT(t))eiet —wo(t)
where

1) =~ (0 7 ) B30 (26)

and generalizing 9 and 10
wolt) = %BZ [au + % - au#ﬁz(t)ﬂ (27)
0(0) =~ (BT 8.0800) (28)

Substituting the explicit time dependence of f,(t) and E,(t) into 27 and 26

4 eB v —wysinw,t 1 w?
Qt) +dI(t) = —Z0 (a”fy 1 . +1 (au + ﬁ) ” Coswvt) Bay(t) (29)

where since w? = 76—7’; and w = ;ch’ we can write k — B%' Also from 28
eB 1 Yoo,
t) = — —
W)= e (a“+7 a”%tlﬁz)

b ! psin(w,t) \

= — (a,u"‘—_a,u 7 (Z()(JJ Sln(w )) )
me Y v+1 c
eB 1 v : 2

- (au + 57 au—7 1 (B2 sin(w,t)) ) (30)
h h wo(t Q(t) + iT1(t)) et

H:—M-B:—i—o’-[)’:__ 0() ' <() ())
mc 2 2 (Qt) — iTI(t))e~ — o

Having constructed the Hamiltonian, all that remains is to solve Schrodinger’s equation

0

ihh = o) (31)
0 fa) 1 wol(t) () +il0(t))et\ [a
"ot b 2 (Qt) — iI(t))e ™t —wp(t) b (82)
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D. Time Dependent Perturbation Theory

We solve Schrodinger’s equation perturbatively to second order in the small parameter
B% = —zpw,/c. The reader is likely most familiar with using time dependent perturbation
theory to compute transition rates between eigenstates of the unperturbed Hamiltonian.
Our purpose is to determine a frequency shift in the observable 3 -s. To see how we will
extract a frequency shift from the Dyson series, we will study a problem for which we know
the exact solution, namely, the Hamiltonian of Equation 12. If we treat the off diagnonal
element as a perturbation, which is valid if the pitch angle is small, then we can compute
the frequency shift due to the perturbation and compare to the exact result. And we do

just that in Appendix XIIF.

E. Second Order Perturbative Solution to Schrodinger equation for uniform mag-

netic field and vertically focusing electric field

Our goal is to solve 32 to second order in 3. (It is convenient to adjust the phase of the
vertical oscillation so that when w, — 0, the Hamiltonian takes the form of the system with

fixed pitch, and to that end include a phase shift ¢ = 7/2.)

Q(t) +ill(t) = —Qp sin(wyt + 7/2) + illj cos(w,t + 7/2)

= —Qg cos(wyt) — 11l sin(w,t)

1 . . . .
— 5 (_Qo(ezwvt + e—zwvt) _ Ho(ezwvt _ e—zwvt))
7 ((QO + H0>€zwvt -+ (QO — Ho)eimvt))

_ (Xoeiwvt + Ybe—iwﬂ))

where
eB Y Wy
Qp = —20— —_— t
0 Zomc (a“7+1 c>ﬁ$y()
eB 1\ w?
Iy = —z9— = ) 2 (¢
0 20 (a“+7+1) Cwﬂy()
At the magic momentum, and with the substitution 3° = —zw,/c
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Qo + 1, 1, v Wy
X == —— = — —
0 B 262(‘}(1(7 1 +7 o ) Bay (33)
Q — I 1 o g Wy
Yy = ——"- — = _ ! = 4
0 9 2/82%(7 +1 Y W )Bxy (3 )
(35)
Also
. 9 1 1 1
wo(t) = wo — mo sin”(wyt + 7/2) = wo — §7r0(1 + cos 2wyt) = (wo — 57@) — 570 o8 2w, t
= W, — Ty COS 2w, t
with
/ o eB 1 Y (ﬂg)Q / eB i (52)2
wy=wp——=—\a,+——a,————| and mp=—(a,——
2 mc 0 y+1 2 mc y+1 2
and
v (B
n=(w—w)=wa(l - ﬁT)
Then we can write,
H="Ho+H
where in the rotating frame
h{w,—w 0 2 0
Ho=—= " |
2 0 —wj+w 0 —n/2
, Hy, Hy) — h T} COS 2w, t Xopert — Yye vt
H;, H} 2 Xgemtwt — Vet —ql cos 2w, t
The solutions to the unperturbed hamiltonian, (H,) are
a(t) = age™™M/?
b(t) = bye™/?
The general solution to the Schrodinger equation for the full Hamiltonian is written
U(t) = ca(t)Pae™? + ¢y (t)ihpe™? (36)
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1, and 1, are a pair of eigenkets of Hy. Substitution into the Schrodinger equation and
some rearrangement gives us

—q ,
lealyy + o™

T levHiy + coHye™] (37)

Co =
Cp =
Note that all of the terms in the perturbative part of the Hamiltonian are proportional to
pitch angle, 89 or BSQ. We cannot solve the differential equations exactly, but for small pitch

angle, the perturbation is small, and we solve by successive approximations. At ¢ = 0, the

muon is in the state ¢,(0), ¢,(0) with polarization

C(l
(s) = (ca cb> o
Cy
Cq R Cq N Ca ~
= (ca cb> Oy X+ (ca cb) Oy y+ (ca cb> (op? z
Cy Cy Cp

01 Ca\ . 0 — Ca\ . 10 Ca\ .
= (ca cb> X+ (ca cb) . y + <ca cb> z
10 Cp 1 0 Cp 0 —1 Cp

If we choose ¢,(0) = ¢,(0) = f then the polarization s(0) = s, is initially in the x-direction

and the zeroth order solution is cﬁf’) = c,()o) = 75. To compute the first order approximation

substitute the zeroth order solution into 37 and integrate

631): . /[(O)H/ JrC(O)H/ mt]d
0

7 t )
R R e

We know that in the case of a fixed pitch angle (f, constant), the precession frequency

depends on (32, so we will need to go at least to second order. But now that is straightforward.

C((f) _ E/ [l (1)H’ + C(l)Hlbemt ]d
0

= 3 [l - e
Then we will have
ca(t) = 4 2 4
o) =+ 4P 4

19



In order to simplify the calculation it is helpful to take advantage of the known symmetries

of #', in particular H;, = —H and H|, = H,,", and introduce a bit of notation. Define

1 t
A= [ [H)dt
1 h\/o[ aa]

1 [t .
&z—/wwWW’
h Jo

Then
D = (04, + OB, \;—;(Al + By)
Cl()l) = Z(CgO)Al — C,(UO)BI) — E(Al - Bl)
Where we set C((lo) — Cl()O) = \/Li Next since
@ — -1 t[_i<A1 + By)H!, —i(—A, + B))H,e™|dl’
a h \/5 o aa 1 ab
—1 1 t )
o) = ——5 | [=i(=Ai+ BY)(=H,,) — i(Ai + By) (Hye™ ]t

V2 o

it is convenient to also define

1 t
02 - —/ [AlH(/la]dtl
h Jo
1 t
Dy = / (B, H.,|dt
hJo
I o
E2 = —/ [(—AI)H;belnt ]dt,
h Jo
I ot
Y-
h Jo
so that
0512) = _L(OQ + D2 + E2 -+ Fg)
V2
1
¢) = ——=(Cy - D; - E; + F)

V2
In that last step we use the fact that H!  is real, and with the initial condition that ¢,(0) =

c(0) = \/Li’ A; is also real. Then

(1) = = (38)
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The observable is the projection of the polarization onto the velocity.

3 B, Bu— 1By — B0 sinw,t — 39, cos( 52 sinw,t)e ™"
o-8= —

Be+iB, —B. —Byy cos(BY sin w,t) et B sin w,t

with expectation value

= —(|a* — |b]*)BY sin(w,t) — (a*b)ﬁgy cos(BY sinw,t)e™ ™" — (b*a)Byy cos(BY sinw,t)e™"

= —(\a|2 _ |b|2)52 sin(wvt) — 2R ((a*b) 0 cos(ﬁg sinwvt)e_i“’t)

Yy

Let’s write out a(t) and b(t)

a(t) =

a*(t) =

(1 - Z(Al + Bl) - (CZ + Dy + Ey + FQ)) e—i(n—‘rw)t/Q
(1+i(A + BY) — (Co+ D3 + B3 + Fy)) 1t/
b(t) = (1+i(A, — B}) = (Cy — Dy — E; + F})) pintw)t/2

b (t) = (1 —i(A; — By) — (Co — Dy — By + Fy)) e~ )t/

Sl =Sl =SSl

where that factor e®*/? transforms from rotating back to laboratory frame. The observables

are linear combinations of |a|? — |b|?| and a*b To second order in the small parameter (3

laf? = [b]> ~ (1 —i(By — Bf) — (25 + Dy + D + (Ey + E3) + (Fy — F) + | By [?)
— (14 i(By — By) — (203 — (D2 + D3) — (Ez + E3) + (Fo — F3) + | B1[?)
~ —=2i((By — B}) —2(D2+ D3) — 2(Ey + EY))
~ —2i(B, — B}) (39)
a’b ~ = (1 + 2iA; + (B})? — 2(Cy + Fy)) e’

~

(1+2i4; + (B;)? — 2F5) ettt (40)

N~ DN~
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where in the end we dropped all terms that are order higer than 522. (Note that A; ~ (32,
By~ 3., Fy ~ 53 and Cy, Dy, Fy ~ Bg’) We need only to evaluate Ay, By and F5.

7 sin 2w, t
H! dt = =0 cos 2w, t'dt = ——=2 Y 41
/ / CoS 2w > 9w, ( )
i Ay ) =~ 2t (42)

1 t ‘/ t 1 , 1 ei(wv+17)t -1 e —i(wy—m)t __ }
I H/ int dt/ — / - X iwyt! Y —iwyt’ int dt/ 2 X, Y, 4
h/o ab® 0 2( Yoo e 2\ i(wy + 1) o —i(wy, — 1) )

v t—1 t—1
B, - Bl — —i (Xo cos(w, + 1) B YOCOS( _77) ) (44)
Wy + 1 Wy =1
(B*)2 _ 1 4<X*)26—i(wv+n)t sinz(wv + T])t/2 Loxty e—2int _ 9 —int COS(wvt) 11
! 4 0 (wy +n)2 070 (wg —n?)
i(wo—n)t o3 2( .
e sin”(w, — n)t/2
’ (wy —m)?
— e X2 e~ @) sin?(w, + n)t/2 . XoYp e ™ — 2 cos(wyt) + e Ly @)t gin(w, — n)t/2
(wy +17)? 2 (Wi = n?) (wo — n)?
_ int (Xg e~ 1wl 5in? (e, ;l— n)t/2 XY, (cos nt2— (3028 wyt) Ly? /@)t sin? (cw, —2 n)t/Q)
(wy +1) (Wi —=n?) (wy =)
(45)
I - 1 [ e~ wotmt’ 1 etlwommt 1\ 1
N B*Hl int dt/ — _/ X, Y, X iwyt’ Y —twyt’\ jint’ dt
2 h/o 1Hgp€ 2/, 0 it 1) + Yo (w0 — 1) 2( 0e™t 4+ Yoe e
1 1 i(wotm)t _ 1 | —i(wy—n)t _ 1
A
4 \ —i(w, + 1) i(wy, + 1) —2iw, —i(wy — 1)
1 pivvt 1 gilwetnt _ q e~ Hwo—mt _ 1
— [ Yo X, — Yot — ——— 46
i (O~ S e ) o
_ 1 it[(wo = n)XG — (wy + )Y
4 w2 —n?
—i(wy—n)t _ 1 + i(wo+mt _ 1 3 t —iwyt Wyt
e e sin w, e e
+ XoYt + . + -
" { wy =1 Wy (—Z(wv +n) iwy — n)}
yetlwotmt ye ot 1)
"o tn)? T (we—n)?
1 (it[(wo (X3 — YE) — n(XE + V)] e coswyt — 1 sinw,t (w, sinw,t — in cos w,t)
1 w2 — 2 +2XoYo w2 — 2 W, (W2 — n2)
2€i(wv+n)t _ 1 _ 2€_i(wv_77)t _ 1)
° (wy +1)? ’ (wy —m)?
= itA/2+ Fy_rem (47)
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where we define

_ 1 (wo(X§ = YF) — n(XG + Y]
A2 =~
4 w2 —n?
- 1 29X,V et cosw,t — 1 N sin wyt (wy, Sinw,t — i1 cos wyt) X2 pilwotm)t _ 1 Ly e—ilwo—m)t _
4 wy — 1 Wy (Wi —n?) (wy + 1) (wy —m)?
For the special case where the w, = 0, (zero electric field and fixed pitch angle)
, 1 [ —it(n(XZ + YY) et —1 ant Let —1 Lt —1
U}SIBOFQZZ( ) +2XoYo | —— +F - X5 e - Yy 7
_ X% (int + [—(e" — 1) +int] — (e™ — 1))
2n?
X2, | X2,
:n—g(mt—(ent—l)) :2)\’/2t—n—§(e’7t—1) (48)
(Note that for w, = 0, Xy = Y5.)
Then we can rewrite 40 as
1 ‘
a*b ~ §(1 —itA 4 2iA, + (B})? — 2F5_ . )elntet
1 A
S 20ALF (B — 2FL )" (19)
and in the w, — 0 limit, when A; — —7(/2 (see 42), and A — X’ (see 48)
1 N / !
@b St (B])? = 2B, )e ) (50)

(To get from 43 to 44 we use the fact that X, and Y} are real.)

We learned in Appendix XIIF that the second order frequency shift appears in the
observables as the coefficients of it (imaginary time). There is no such term in 39. However,
F3 does contain such a term, A that contributes to a second order frequency shift in a*b.
Recall that a*b corresponds to the polarization in the x-y plane. There is an additional
contribution to the frequency shift, 7 in the w, = 0 limit from the A; term.

The precession frequency in the rotating frame is w’.

if w, > 0, then

w'wn—i—w—/\:wg—%—i—)\. (51)
if w, = 0, then
w’~n+w—)\:w(’)—%+>\'—7r6:w6—7r0+2/\. (52)
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There is a discontinuity in the precession frequency at w, = 0. If w, = 0 there is no
oscillation, the pitch angle is fixed, and (82) = (8%)%. For w, > 0,(52) = 3(62).

At the magic momentum

X2 0\2 2 2
(5 ) 'Y + 1 w ﬁwy
1 ,YQ w2
X2 Y2 — —(R%2, ,2 27y 2
0 + 0 2(ﬁz) Wq (/7 n 1)2 +’Y w2 Ty

and
2
2 (25 22) — (L +77%)
wy —1°

1
A= Lz,
and since 1 = w, + O(BY)? we might as well replace n with w, on the right hand size

2,
Wv(#j) - wa((ﬁHl)Q + 7 )

(60)2 262, . (53)
If w, =0, then
! (1 ( 0)2 i 1 '72 2 )
w = we(l—(5; — = -
y+1  2(y+1)27"
1
~ w1 - 5(80?)
If w, >0
B 2 1 20(5%) — wul e +7°)

w/:wa 1_ z _wa 2 Y Y (54)

2 |y+1 27w w2 — w?

In the limit where w, > w,

e (1B v Lwa g %2_¢@
¢ 2 | 2w W\y+1 w

v+1
(50)2 Y 1 2
—w (1=l L2 D -
RS ZWMW ) P L
O SN N T O
¢ 2 |y+1 2\y+1 ~2-1

The precession frequency w’ is plotted as a function of w, in Figure 7 for muons at the

magic momentum and with pitch angle 87 = 0.01. At w, < ', W' = w,(1—1(6?)?), whereas

if w, > w', W = (w,(1 — }1(62)27;’:). In the g-2 experiment w, ~ 10w’
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FIG. 7: The simulation (points) integrates the equations of motion and the Thomas-BMT
equation to determine 3 - s(t) and the frequency is extracted by a fit. The fitted frequency
represents an average precession frequency over 2000 turns of the muon around the ring.
The solid curve is Equation 54 assembled from Equations 51 with 53. When the betatron
frequency f, is very low, there are an insufficient number of betatron periods to determine
an average precession frequency, as evidenced by the discrepancy at low frequency in the

plot. The nominal precession frequency, w, = ;—Iiau = 27(0.23MHz).

VII. RADIAL MAGNETIC FIELD

Suppose there is a uniform radial field (in addition to the uniform vertical magnetic field),
and that the force on the muons due to the radial field is balanced by an equal and opposite

force due to a vertical electric field, presumably the quadrupole field.

B = B,(sinfx — cosfy) + B,z

E=F.z

The velocity is clockwise

B = p(coswt x — sinwt y)
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so that

where 0 = wt, and

B = B, (sinwtx + coswty) + B,z

B x E=FE,[(sinwt x+ coswt y)

Note that B x E is in the radial direction.

where

By inspection

12
w

1 1
B = —-)B — _ E
(a“+7) (au+7+1)ﬁx
H=—-pn-B
B eh o
 me?2
FL Wo (Qr Hr)eiwt
2 (Q, — I1,)e™! Wo
e
- "B, -
wWo me (au+ )
w:LBZ
mery
0, = —i—B,(a, + -)
c
11 —F.(a, + ! )5
r = "1 2\ - 4
1 ,Y_’_]_
(wo — w)? + 19, — 11,2
2
B 1 E.p 1
2 T z
) u+(§z(au+_)_Bz (a”_’_'y—i—l




As the vertical forces sum to zero, F, = B, and

B\’ 1 10\’
2 T 2
i+ (5) (3 M‘”F))]
I B\ 1 421 1\
2 r
“u*(?) ( TR ﬁ>)
| B\?/1 —1\?
(8 (35
I B.) \v gl
[ B.\? (a 1\?
2 T o
i () (5 5)
i 2 2
(&) ()

B. 7
L (B 1+ 1/a,\?

B, 2

1/2

B,

1 _r
+(5

1/2

1++2-1
2

) (

)]

as shown previously by Miller[7] by direct solution of the Thomas-BMT equation.

VIII.

LONGITUDINAL MAGNETIC FIELD

Consider the case where there is a longitudinal magnetic field, (in addition to the vertical

field), B = Bj(cosfx — sinfy) + B.z.

Since the velocity is everywhere parallel to the

longitudinal field the trajectory of the muon is unaffected. The velocity

B = [(coswitx — sinwty)
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1 gl
B=|(a,+ ;)B - au(m)(ﬁ -B)B

P
= ((a, + —)(B.z + Bj(cosx —sinfy)) — CLH(%)B2BI(COS wtX — sin wty)]
v v

1 1
= |(ay+ =)(B.2) + Blla, + - —a
(0 + 2)(B:2) + Bila + ~ —a,

~
v+1

3?)(cos wtx — sin wty)]

[ 1 . 1 Yo ) ) .
= |((a, + —)(B.z) + Bi(—+a,(1 — —— cos wtxX — sin wt
(0 D)(B2) + B+ (1= ) )

Then
H _ _Il _ _ii_i wo Qlezwt
me 2 et
where
e
— -
Wo me (au+ )
w= ¢ B,
mey
€ Y 2
O =—DB; |- 11— —
1= b 7+%( 7_1_1/6)

A. Uniform Longitudinal Field

In general the longitudinal field may depend on azimuthal angle. In the case that B; is

independent of azimuth its affect on the precession frequency can be determined exactly.

The eigenvalue in the rotating frame

WP = (wo — w)? + |2

Bi\* (1 15\
i+ (5) (roo-20) |
[ Bl 2 1 a 2
*(?) (f?”)]
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FIG. 8: Fractional shift in w, due to the ring average longitudinal field.

At the magic momentum

:w(l
A/ 1 Bl 2
- ”5(?) th (55)

as shown previously by Miller[7] by direct solution of the Thomas-BMT equation. Note
that we define w, = ef(j ., that is with respect to the vertical component of the magnetic

field rather than the magnitude of the field |B| = /B2 + B?. The dependence of precession

frequency in the rotating frame on longitudinal field is shown in Figure 8.

The polarization is given by (see section XII B for details).

(55) = (0082 (w't/2) — W0 = :’,)22 — % sm?(w't/z)> coswt — 2 (“Ow_, Y cos(w't/2) Sin(w’t/Q)) sin wt

w202 _
(s,) = — (cosz(w/t/Q) _ o :),)2 : sinz(w’t/2)> sinwt — 2 (wow/ ~ cos(w't/2) sin(w’t/?)) cos wt
1 (W —wo)Y .

(s:) = §(|0J|2 —[o?) = TSIHQ(WWQ)
The projection of the polarization on the direction of motion

. 1 .

B-s= <cos2(w't/2) — ?[(w —wp)? — Q7] 81n2(w’t/2)) (56)
is shown in Figure 9.
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FIG. 9: The projection of the polarization on the direction of motion (,C:} -s) with
longitudinal magnetic field 10% of the vertical field and longitudinal field zero is shown in
each of the three plots. The top plot is computed in simulation by integration of the
equations of motion and the BMT equation. The middle plot is the analytic result
(Equation 56). The bottom plot is the simulation and analytic superimposed. The

agreement is excellent.
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B. Longitudinal Harmonics

In general the longitudinal field can be expanded in fourier harmonics. Then each har-

monic is written as

~

B,, = b, cosnf(cosx — sinfy) + B.z
where n = 0 is a uniform longitudinal field everywhere tangent to the trajectory and

B, - B = b, cosnwt

1 1
B = (a, + —)B.z + b, cos nwt ((COS wtx —sinwty)(a, + —) — GMLBQ cos(nwt)(cos wtx — sin wt;
v v gl

+1
s (a, + %)Bz by ((au + %{) cos(nwt)e™! — aM#BQ €O
by, ((au + 1) cos(nwt)e™ " — a, =17 5 cos(nwt)e_m> —(a, + 3)B.
eh o B hif w Qe
mec 2 9 O*eiwt —wp
where
e 1
=B, —
wWo C((Iu + "}/)
1
0= micbn ((au + 5) cos(nwt) — auﬁﬂ2 Cos(nwt))
1 4 4
— §an (efmwt + eznwt)
where
e 1 T a2
X = — g
mc(a“+7 “v—l—lﬁ)

h - Q
2 O —wy+w

In view of the time dependence of €2, we proceed using time dependent perturbation theory.

Rl

Solutions to the unperturbed Hamiltonian Hy = 3 , with n = wg — w are

0 —n
a(t) = age™™M/?

b(t) = boe™/?
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The general solution to H is

P(t) = a(t)ba + b(t)s
= ca(t)e_i”t/Qwa + cb(t)e"’t/gwb

Suppose in the initial state that c,(0) = ¢(0) = \% Then in zeroth order c.’ (t) =

\%, cl(,o) (t) = \/Li In first order

¢ - 1 [ : b ’
CI(,I) (t) _ / CELO)Q*(fmt At = _ZE/ §an (efz(nwfn)t + ez(nw+n)t ) dt’
0 0

11 —i(nw—n)t __ 1 i(nw+n)t _ 1
) _an (e . + c . )
—i(nw —n) i(nw+n)

_Z_
V32
t
e (t) = —i / AV Qe dy!
0

In second order

t
470 =i [ dowrenar
0

t
cD(t) = —i/ cl()l)(t')Qe’i"t,dt'
0

_ 1 tXQbi (e—i(an-—n)t — pinwt N ei(2nfu+77)t — pinwt
42 Jo —i(nw — 1) i(nw +1)
eint’ _ einwt’ eint’ _ efinwt’ .
+— + — e~ dt!
—i(nw—mn)  i(nw =)
1 t (ei(an)t/ _ e*i(anﬂl)t/ ei(2nw)t’ _ ei(nwfn)t’

= | X%} . +
w2ty T S =) (o + 1)

1 — ei(nw—n)t’ 1 — e—i(nw+n)t’
+— + — ) dt’
—i(nw —n) i(nw +n)
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(2) / 2b2 ( o—i@na)t _ o—i(nwtn)t! e @nw)t _ gi(nw—n)t’ 1 — eilnw—n)t’ 1— e—i(nw+n)t’> ]
Cq ( + + 4 ‘
NG

—i(nw —n) i(nw +n) —i(nw —n) i(nw +n)
_ 1 X2b2 1 —z'(2nu11)t -1 B e—z‘%nw-‘rn)t -1 e ei‘(nw—n)t -1
4\/_ —i(nw — 77) —2inw —i(nw +n) i(nw —mn)
i(2nw)t _ ei(nwfn)t -1 G*i(”"-”ﬂl)t -1
. - (58
(nw + n) 2inw i(nw —n) —i(nw +n)
1 ( (6 inwt sin(nw)t e—i(nw-i-n)t -1 ei(nw—n)t _ 1)
- +t————
4\/§ i(nw —n) nw —i(nw +1n) i(nw —n)
( elinwt sm nw B ei.(nw—n)t -1 e e—ian—J—n)t . 1>) (59
(nw + 77 i(nw —n) —i(nw +n)

1 2)
=— |-z t+CG(, rem)
\/§< 2

where A is the coefficient of imaginary time it in Equation 59

Ifn=0,
1
An =0) =2X2bh~,
U

sin(nwt)

as the terms proportional to reduce to t when n = 0.

If n>0,
An>0)=x22—1

Next recall

A
(1 40— iSt+ Cf)mm)

(14 +C2,, ) e

Note that there is no contribution to a frequency shift from e or ¢V since they contain no

term proportional to t, whereas 2 does have such a term, with coefficient A/2. CéZ_)rem is
all of the terms remaining in 59 that are not coefficients of ¢, which in turn is different for
n =0 and n > 0. Fortunately the value of that remaining term does not contribute to the

frequency shift.
The amplitudes to be in the states ¢, and 1/, are

. 1 ,
a(t) = cq(t)e M2 = (1 + ¢V 4 C’a Tem) et n+A)E/2
(1) = cult 7
; 1
b(t) = cp(t)e/? = = (1 + V4o m) i+ 012
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As shown in 6, the polarization (¢ | /2 | ¥) in the x and y directions is proportional to the
real and imaginary parts of a*b.

1 *
ab=3 (1 + e+ Oﬁlem> (1 +e! + 02

rem

) RICENE
For n = 0, the precession frequency in the rotating frame at the magic momentum is

Ww=n+An)=w)—w+ A(n)
X202 (wp — w)

((nw)? = (wo = w)?)

1/e 2 2—-1 ~-1\> 1
= Wy — - (= 1 —
o CLhLQ(mca“) ( + v v ) (wo — w)

:CUO—CU+2

1 2 bg 2 1
wa+§ aB_g w_a
1 b2
Wa(1+§B_()272)
Aw' 10 ,
ve 282

consistent (to second order) with the exact result in Equation 55. (Note that for clarity

__ eB]

¢B=q , rather than w, = “—ay.) If n > 0 the precession

mc

we here use the definition w, =
frequency in the rotating frame at the magic momentum is
/ _ 2@’)’2 Wa

YT T B Y (nw)? — u2)

b2 A2 2
O O
B? 4 (nw)? — w?

A 1B, w,
We 1p2) (nw)? — w?

It is amusing to see how the contribution to the precession frequency depends on the

harmonic number. To that end consider the ratio of the n > 1 harmonics to the n = 0

harmonic
Aw'(n>0) 1 w? %
Aw'(n=0) 2(nw)?—w2b}
And if b, = by
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FIG. 10: Aw(n) is the frequency shift for the n'* harmonic. Aw(0) is the frequency shift
for the n = 0 harmonic. The ratio is shown as a function of n. b, = by for all n. The points
are from integration of the Thomas-BMT equation and the equations of motion. The open

circles are computed for b;/B, = 0.01 and the filled circles for b;/B, = 0.005. The line is

Equation 60 where n is treated as a continuous variable.

Using n = -~ B.a, and w = meBz so that we write w = %
m

Aw'(n>0) = %(nw)_?(ja:f()'yau)zAd(n =0)
IR
2 (nw)? — w2(’yau)2A ( 0)
1 _(7au)2 w/ n—
2n? — (”Yau)QA ( 0
! 7 Aw'(n =0) (60)

- 2n2(72 — 1)2 — A2
(Note that the tuneshift for n > 0 harmonics has the opposite sign of the n = 0 term.) The
dependence of frequency shift on longitudinal harmonic is shown in Figure 10. The points

in the plot are from simulation (integration of the Thomas-BMT equation).

IX. ELECTRIC FIELD CORRECTION

The magnetic field B = B,z and the electric field is in the radial direction We assume no

betatron oscillations so the particle circulates on its closed orbit. The electric field is
E = E,(sinf x + cos0y). (61)
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The velocity has the form

B = B(coswt x — sinwty) (62)

Substitution into the Lorentz force law (Equation 16 gives us

—wP(sinwt X + coswty) = (E-(sinwt x + coswty) — BB, (sinwt X + coswty))

mey
E,
—m:i(——BZ> (63)
mey \ B

The effective magnetic field

5= Buout D) (0 ) 65 2 (64)

and the Hamiltonian

where

In the rotating frame

h[wg—w 0
Hyr = —= | (65)
2 0 w — Wy

with w given in Equation 63. The precession frequency in the rotating frame

Ww=wy—w
- ° <Bza“— (au— %lLl - 727_ 1) BET)
{on- o)

The contribution to the precession frequency in the rotating frame vanishes at the magic

>

3

momentum.
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X. ZERO MAGNETIC FIELD

It is instructive to study the case of an electrostatic focusing channel in the absence of a
magnetic field. We expect that at the magic momentum, the projection of polarization on
velocity 3 - s will be constant. Let’s see how that happens.

Now wy =w =0, and S, — £,).

0 Il(¢)
Y =
—iIl(t) 0
(0 -
0 —II(¢)
where
1 (14
R=_——
V2 \i1
Then
9 [a i It 0 Rl a
a\y) 2 0 —II(¢) b
ngl al _ip () 0 [
ot b 2 0 —II(t) b
o (a) 4 (I() O a
Aa\p) 2\ o -1/ \b

The now decoupled Schrodinger equations are straightforward to solve.

a l 1 e 1
—dt = =II(t) dt = =—— — | E t) dt
[ fde= ey de =35 (a0 ) B0

mc

. ekzy 0 1 . 9
~ W0 (1 — = MARNN/
ik mc/cosw B, ( 2(@, sin w,t)?)

ekzg

ek
Ina = 7552—20 / cos wyt B0 cos(BY sinw,t) dt

1
~ K I (sin wyt — 5522 sin® wvt)>

2mcew,,

7
~ 5/{705252 (sin wyt)
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where kK = (au + #) and we keep to order 32 or equivalently z2. Then

?
a~ aop exp(§/1705252 sin w,t)

b ~ by exp(—%/{%ﬁgﬁg sin wyt)

Recall

and

b
= <a* B*) Rio,.R Z = (&* B*) s Z
=a*b+ b*a
() = (a0 0) oyt 1) = —lal* 4 if

I

(s:) = (a* ") Rlo.R ) =ta o it

If we assume @, = by, so that the polarization is initially in the z-direction,

(s4) = cos(koBYBY sin w,t)
(sy) =0 (66)

(s.) = sin(kyo 8280 sin w,t)

Using 22, 23, and 66 we find that

B2 cos (k7032 BY sin w,t) cos(B8Y sin w,t) + sin(kvyp8°BY sin w,t) sin(32 sin w,t)
[89% cos2(B0 sin wyt) + sin?(40 sin w,t)]1/2

s -

~

The rate of change of s - B will include even harmonics of w,. At the magic momentum, s -3

is independent of time (k7032 ~ 1). (See XIIE for details.)

38



XI. SUMMARY

Fixed pitch, with velocity S, parallel to the magnetic field B = B, z.
W = we(1 = )Y (67)

Time dependent pitch. Vertical betatron motion with amplitude 3°. (8% ~ ¢ where 1
is the pitch angle) for arbitrary (but non zero) vertical betatron frequency w, and at the

magic momentum. To order (3%)?

B 2wy 2 9 w2
/ 1 ( 2)2 /y 1 /62 2(*/1)(7+1 _UJ ) - (A)a(—(’y+1)2 _|_ /7 w2)
’ 2 v+1 9 el xy w? 2

Time dependent pitch where pitching frequency is much greater than w,. Vertical

betatron motion with amplitude 8 in the w, > w, limit, at the magic momentum
r_ (62)2 72
W =we|1l-—
4 (-1

O

Uniform longitudinal magnetic field

Radial magnetic field

1/2
BN/ 1 1\
W =w, |1+ (—l) (— + —) (69)
B. a.y 7Y
Nonuniform longitudinal field in terms of fourier harmonics to order (b,/B.)? for

magnetic field harmonics and b,, defined by

B, = b,cosnf(cosf x —sinf y) + B.z

b2 A2 2
o (1B W
B? 4 (nw)? — w?

Aw' 102 5w,

We 4327 (nw)? — w?

Closed orbit electric field contribution

, 1
w = mic (Bzau - <GM - ﬁ) BE,,«) (70)
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XII. APPENDICES
A. Solution of Schrodinger Equation in lab frame

We aim to solve the coupled differential equations exactly.

a(t) i [ alt)wo+ b(t)Qett
b(t) 2\ a(t)Qe ™t — b(t)wo

To solve these coupled differential equations first differentiate the b(t) equation,

b= [(a — iwa)Qe ! — l')wo}

N | .

then substitute for a(¢). We have
b= % [(%(awo + Q™) — iwa) Qe — bwo]

and
. 7 ] it W b .
b= 3 {(zaQe t(?o —w)+ 2592 - bwo]

Then substitute the expression for a(t) from the original equation

a(t)Qe ™t = —2ib(t) + b(t)w.

and we get
S PR it —iwt (WO 9 2
b—2 {(z (( 2ib + bwy)e /Q) Qe (2 w)—l—zzQ bwo]
SR PN wo boo
b—Q{(z< 2@b+bw0>(2 w)+22Q bwo}
. . b, )
b:§ (—2bw+z§(w0—2wow+§2)
B:—ibw—é(u}2—2ww+92)
4 0
6——i6w—é<w'2—w2>
4
where

w2 — 2w + O = W'’ — W
— W = (wy —w)? 4 Q? (71)
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Define v = iw, and a = %(w' 2 w?). Now our coupled second order differential equation

looks like the equation of motion for a damped harmonic oscillator.
b= —’yi) —ab

The general solution has the form

b= Ae
Substitution into the differential equation gives
—0* = —ify — «

and

SO

b= [C’e’%t + De_i%t] e 13!

or even better

w

b= [Acos(w't/2) + Bsin(w't/2)] e "2

The boundary conditions give us

b(0) = A = by
and
b(0) = (—iw/2)A + (' /2)B = %(an — wobo)
— Wbo + iw'B = (wObo — an)
i
— B = J [(w — (JJo)bo + an]
Then

b= [bocos(wt/2) + = [(w — wo)bo + Qao] sin(w'1/2) | %"
w

41



and

= (-

. 6iwt

K—zz‘(_bozw /sm(wt/2) é[(w wo)bo—l—an]cos(wt/Q)) e—it/2)

+ —2— 5 [bo cos(w't/2) +- [(w wo)bo + Qag] sin(w’ t/2)] —i5t

twt

+ wy [bo cos(w't/2) + 5 [((w — wo)bo + Qag] sin(w’t/Q)} e‘“z’t} €Q
_ (_22'(_602“’/ sin(w't/2) + %[(w — wo)bo + Qag] cos(w't/2))
wo — w) | by cos(w't/2) +- [(w — wo)by + Qag] sin(w’ t/2)_ ) 6;t
= ((ibow’ sm(w t/2) + [(w — wo)bo + Qag] cos(w't/2) o
wo — w) | by cos(w't/2) +- [(w — wo)bo + Qag| sin(w't/2) ) 65
= ((ibow’ sin( t/2) + [Qay] cos(w t/2)

+

or

B 2

. W
Glft

Q

[ = o + aclsin(u'e/2)
iets2

Q

(w

) sinut/2) + anflcos(u't/2) + 1 sinuty)

i(wo eiwt/2

Tf“) sin(w't/Z))] 5

(ibow/ — Zbo

(—ibog) sin(w't/2)) + apQ(cos(w't/2) +
(—ibo%) sin(w't/2)) + ag(cos(w't/2) + i(wow—Tw) sin(w’t/Q))} it /2

ag cos(w't/2) + %[(wo — w)ag — (o] Sin(w’t/2)1 ewt/?

(cos( 't)2) — L) i (o t/2)> i3t — D sin(w't/2)e's" ao

— D sin(w't/2)e "5 <COS(w’t/2) + do=wo) Sin(w’t/2)> et | \ b,
(72)

B. Linear Albegra

Determine the eigenvalues and eigenvectors of a Hermitian matrix

A B
H =
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The eigenvalues
0=(A—- N (-A—)\) —|B]?
— Ay = +/ A2+ |BJ?
but for conevience define A = jL\/WlB]2 . The eigenvector equation
A B al _ )

B* —A b b
Aa+ Bb= Xa, B*a— Ab=M\b

b(Aa + Bb) = a(B*a — Ab)

0 = Bb? + 2abA — a*B
_ 2Ab=+ \/(20A)? + 4| BJ2?
N —2B*

(Aim) D axn

Normalize
A+ N)?
b|? 2:1:62-L——— 1
B+ 1o = 1= o (L2l 4
) B|2 1/2
b :b: 0 |
wlbl=b=e (<A+A>2+\B2|)
ei9|B] (A+N)
Bt J(A+ N2+ B
B (A+))
\/(A+)\)2+]B2y

That last step follows if we choose a to be real which requires that B* = | B|e®.

Now let’s check to be sure

1[{A BY [(A+N 1 [ (A+N)

N B* —A ei6|B‘ N 6i0’B|

A(A+ \) + B|Ble® A(A+A)
(A+ \)B* — A|B|e® | B|

where N = ((A + \)2 + |B?)'/2 = (2A(\ + A))Y/2. The orthogonal eigenvectors with eigen-
values £\ are

1 [A+ A 1 B
vy = — , U= — (73)
N\ p N\ A+
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The matrix H is diagonalized by the similarity transformation

Ay 0
0 A

ST'HS = H =

where the matrix S is constructed from the eigenvectors

1 (A+)X B
S = —
N\ B —(A+))

The general solution to the Schrodinger equation

- 0
HY =i—
V=g
are
- ‘ - [0
1/} — 670 671)\1} + b ez)\t
0 1
Transform to the lab basis
a(t age M a
D) s () =s (™
b(t) boel)\t b()
where
S e—z’)\t S ez’At
s= ("1
SQle—Mt S2Qez>\t
Then
: -
D) _siy [®) = sy
b(t) b b
Since
a | s ?0
bo bo
in the lab basis
al(t a a 1 [ (A+ N)e ™ BeM
D =s ) =sws [“] = (Y |
b(t) bo bo) N\ BreM (A4 N\)eM
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al 1 Qo
<b> N 4 . . . (bo)
(A + )\)B*e—z)\t _ B*(A + /\)61/\15 |B’26—1)\t + (A + )\)267)\15
, (A4 XN)?+ |BJ?) cos(At) + i(|B|* — (A + X)?) sin(At) —2i(A + \)Bsin(\t)
e
—2i(A + X\)B*sin(\t) ((A+ X2+ |BJ?) cos(At) —i(|BJ* — (.
((A+X)2 +|BJ?) cos(At) + i(—2A(A + \)) sin(At) —2i(A + \)Bsin(\t)
1
T N?
—2i(A + \)B*sin(\t) ((A+ N2+ |BJ*) cos(At) + i(2A(A + N))
cos(At) + %%A) sin(At) —2i (AE)Q‘) sin(\t) ag
—27L—<A+’\)%Sin(>‘t) cos(At) + 27JA—(A;2)‘)) sin(\t) by
Then
a . . ao
_ cos(At) +1 22;(‘;1&’)\) sin(At) —2i 2(;\4(;1/\ sin(At)
, — g N in) cos(At) + 2 Al sin(A) )
0

—Z'B%n()‘t) cos(At) + i4 sin(At)

(COSW)Z Asin(M\t)  —iZsin(\) ) o

bo

If A = —(wy —w)/2, B = —/2 and o' = 24 = /(wo — w)” + O

a cos(w't/2) — i sin(w't/2) z% sin(w't/2) ag

b Zw cos(w’t/Q) + z'(w;—ido) sin(w’t/2) bo

(IJ/
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The above is the solution in the rotating frame. In the lab frame

Rfl a eiwt/Q O a
b b 0 e—iwt/2 b
lab
(COS(UJ’t/Q) — iwc—utluo Sin(w/t/2>>eiwt/2 _Zg Sin(w/t/Q)eiwtﬂ ao
2 sin('t/2) o —iwt/2 (cos(w't/2) + z% sin(w't/2))e /2 bo

w

Recall that (o) = (0,)X + (0.)y + (0,)z

01 a
= (o) () () e (74)

Ifatt =0,0, =1, then aozboz\%5 then

1 — ‘ Q* .
at = 7 ((Cos(w’t/Q) i wlwo sin(w't/2))e” % 4 ZU sin(w't/?)e_“t/Q)

1 O sin(w't/2) . _ ,
b= 7 (_i—smu(;u / >e_m/2 + (cos(wW't/2) + i—(w wIWO) sin(w’t/Q))e_““t/2>
Wo

* 1 (w(] - w>2 . —iw (Q*)2 . —iw W — .
a*b = 3 ((COSQ(w/t/Q) - sin?(w't/2))e” " + o sin?(w't/2)e” ™" 4 2i > cos(w't/2) sin(w't,

The polarization, (Q = Q + il),

— w2 =02 4112 QI —
(54) = (cosz(w’t/Q) G w)w/2 + sinz(w’t/2)> cos wt + 2 (—F sin®(w't/2) — wow, d cos(w't/2)
— w2 =02 4112 QII —
(sy) = — (cosz(w't/2) ) 5 + sin2(w’t/2)) sin wt + 2 <_7 sin?(w't/2) — d - d cos(w't/
w w w

(5 = ol — 1) =~ =2 ooty 4 T os(utty2)sin(usty2)

C. Electrostatic vertical focusing in a uniform magnetic field

The equations of motion are

dp. e

o Q2
b= B ) (76)
df. e
dt - rm(ﬁsz - Bw62E2> (77)
g, e

46



The magnetic field B = B.z, and the electric field E = E.,z = —kzz. Let’s substitute the
proposed solution (to second order in the small parameter (52)) into the above equations of

motion to confirm.
. 0 0 .- A . A . 0 .- A~
B = =B, cos(B, sinw,t)(cos(wt)x — sin(wt)y) — sin(3; sinw,t)z (79)

Dropping terms beyond second order in 3° the first of the three equatons of motion becomes

dﬁz € 2 ek 2\3
- —E.(1-5)=- 1— p2)32
g yme (1-57) %ch( B2)
2
— _ﬂZO COS(,dvt(l - 53)3/2 = _wvﬁg COS W’Ut<1 - Bg>3/2 ~ _WUBS COSMvt
C

The time derivative of 5, from 79 is

dp.

i — %, cos wyt cos( Y sinwyt) ~ —Bw, cos wyt

in agreeement with the preceding. The second of the three equations of motion is

dﬁx . L _ . _ 0
dt = ~yme (ﬁsz Ba:ﬁzEz) - wﬁy ﬁxﬁzwvﬁz

The time derivative of 3, given in 79 is

= By, (wcos(BY sinwyt) sinwt + Bw, cos wyt sin(57 sin wyt) cos wt)

~ _wﬁy - Ezﬁz/ﬁcc)

as required.

D. Lorentz Boost

Consider again the muon circulating in a uniform magnetic field B = B,z. The spiral
trajectory of the muon, traveling in a clockwise direction has velocity components parallel
and perpendicular to the magnetic field 8 = B,,(coswt) x — sin(wt) y) + 5.2 (see 3). We
translate by a Lorentz boost (3, in the z-direction into the frame where 8, = 0. The momen-
tum transverse to the boost, and the magnetic field (parallel) to the boost are invariant. In

the boosted frame the velocity is
B = |B|(cos wbtx — sinw’ty) (80)
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with cyclotron frequency is
y eDB.

w. =

mey'
According to the BMT equation (Equation 8), the polarization of the muon in the boosted

frame will precess about the z’-axis with frequency

y eDB. 1

W = mc(aﬂ_‘_,?)

such that

s = |s|(cos wltx — sinw’ty)

where the superscript b indicates the quantity measured by an observer in the boosted frame.

Then, the quantity of interest,

B -s = —|8||s|(cos w’t cos W't + sin w’t sin w’t) = —|B||s| cos(w? — wWb)t
and w? = w? — Wb,

b b
a’ws7

The observer in the boosted frame measures the frequencies w w? with her local clock.
Now let’s transform back to the lab frame. From the point of view of the observer in the
lab frame, the time measured by the clock in the boosted frame is dilated. According to
the clock in the lab frame everything is running slower in the boosted frame, including the
frequencies of revolution and precession by a factor 1/ where v = 1/ \/1—753 . As measured

in the lab frame
we(lab) = wb/1 — B2 (81)
=Wy (1— 262"
1
~ b1 — S
B0~ )

where v is the pitch angle and in the limit where ¢y < 1 and v > 1.

E. Magic Momentum in Electrostatic focusing channel

Consider the projection of the polarization onto the direction of motion.

B2 cos (k032 8Y sin w,t) cos(B2 sin w,t) + sin(kvp 82 BY sin w,t) sin(32 sin w,t)
897 cos? (80 sinwyt) + sin? (30 sin w,t)] /2
32 cos ¢ cos O + sin ¢ sin 0
(892 cos? § 4 sin? 6]1/2

s =
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Expand to second order in 6, ¢
o B (L= 40P + 08
(371 = 300+ o717
2(1—3¢%)(1 = 36%) + 90
(371~ ) + 2]
B0 - 31— 36%) + o6

W (1
1 1 0?2
0 21— Loy 4 e><1_—)
92
0 2 . 92
(P +0*))+00 | [1 - ——
N2 S 3092 )
~ (P ol —
; (m( (6% +0%) 00— 0
Then
d .
ES . ﬂ = 0
if
ﬂo ) ) 5092
0= (gb +6%) + o — ——
27269
F :
0= 5 (k7089 + 1) + £y0Be — 275502
0~z
1 1
0= —2((x0B)? + 1) + 30— sy
2 27392
1
0= ((k7087)% +1) = 2K70 +
B0
(290 = 492 — 4(82°3 + 1))
K =
2739°
1
K= ——
’70532
Finally
B 1 1
n Y + 1 302
1 92 1
%
a# Y% -1 Y+l
0 — 0 Yo —1
-1 g1
1
0. —
o1



F. Determining the frequency shift with time dependent perturbation theory

Our goal is to solve the Schrodinger equation, defined by the time dependent Hamiltonian
(Equation 25) using standard time dependent perturbation theory. But before we address
that problem let’s try something simpler, namely the case with fixed 5, as in 12. We
already know the exact solution and we can expand the exact frequency shift to second order
in the small parameter 2. (Recall that € is proportional to the velocity in the direction
of the magnetic field 5,.) We can alternatively solve the Schrodinger equation for 12 to
second order in 2 using perturbation theory[1][p. 302] and check for consistency. (Following

Griffiths QM, 1st edition, section 9.1.2, page 302, problem 9.4).

H _ _E wO‘ Qe’iwt
2\ Qe —yy,
=Ho+H
hfws O h 0 Qewt
2\ 0 —w 2\ Qet 0
The Schrodinger equation is
(1) = Hi)
1TN— =
ot
1V, and 1, are eigenkets of the unperturbed Hamiltonian with eigenvalues E, = —gwo =

_Eb
Hova = Egtba,  Hothy = Epihy

and since v, and 1, form a complete set, the general solution for the exact Hamiltonian is

a linear combination of the two

D(t) = ca(t)tbae™ " 4 cy(t)hye 04

= Co(t)1hae™t? 4 ¢y (t)ahye 0!/ (82)

Substitution of 82 into the Schrodinger equation yields, after some manipulation

—iwot

: o
Cq = —ﬁcb?{abe

Q. )
— —ZCbEGZUJtB_ZWOt
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or

Q0 .
i6q = cp—e
2
Q.
iy = caEe’“ﬂ (83)

where 7 = w — wy. If the muon is initially (at ¢ = 0) in an eigenstate of o, the zeroth order

solution to the Schrodinger equation is,

In order to compute the first order correction we substitute the zeroth order solution into

the right hand side of 83 and integrate

—i [t =iV 1V, ,
)= L [ Vet = —Z,— e —1)= ———(e™ —1
0= 5 [ vem = 2l e -1y = - Ve
—i [ Vo 1V,
Clt — _Z —imt _ _Z_ —int 1) = —— e—mt 1
- | e ) = e )
where V' = 2. Now we can write ¢,(t), ¢(t) to first order
1 1V, .
cat) ~ L)+ el(t) = —= — —=—(e" — 1
() ~ l0) + ) = 75— (e 1)
1 1 -
alt) ~ 0 + 1) e )

=4
V2o V2
To compute the second order term substitue cl(¢), ¢} (¢) into 83 and integrate again
1V

(6—1'7775 o 1)V€i77t
V2

.2 1 —int __
e, = Ve " =

.V t P R
= —%—/ (e7" ™ — 1)Ve™ dt’
nJo
: t
ciz—%zf (1— eVt
nJo
p_ iV, et

(
<

Following Griffith’s notation where a(t) = c,(t)e™™°%/2 and b(t) = c;(t)e™°"/? we can write

1 . VvV . vz .
a(t) ~ Eezwozt/Z (1 o E(eznt o 1) + F (eznt —1-= int) + .. > (85)
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Rearranging
1 . V2 V. V2
a(t) ~ ﬁewotﬂ ([1 —i—t] — — (" — 1) + —
n n n

(ei"t—1)+...>

Then to order V?
1 12 VvV . V2 ;
aft) ~ etz V2 (1 ) Ly +)
3¢ =i o ol )
1, 2 4 Vo
~ et/ 2 (1 () (1) )
V2 n U
2
N %ei(wow)t/Zeiwt/Ze—i‘ft (1 _ K(eint —1)+ V_2 (e —1)+.. )
n n
1 '/\t/2't/2< Vo it v int )
~ ——p A2 Ww 1——(E" =1+ — (" —1)+... 86
7 S =)+ (1) (86)

where \/2 = I + V?Q Finally with the substitutios n = w —wp and V' = Q/2

Q 4 02

) 2
a(t) ~ ie—l(w—woﬁ'g(%%))t/?eiwtﬂ <1 N (ez(wfwo)t B 1) +

V2 4(w — wo) 4(w — wp)?
I iw—wotr 22 /2 t/2< < Q ° ) - i(w—w0)t/2 o
~ ——e 2(w—wg) /% 1— — 1e"\ YT 2 gin((w — wp)t/2) +
V2 (W—wy) 2(w—wp)? ( 0)t/2)

- ie—i(m)t/Q iwt/2 e—i(w—wo)t/2 B Q . 0 isin((w —w )t/2) +
V2 (W—wo)  2(w—wy)? ’ o

I, t/2 ( 7i(w7w0+7)t/2 ( Q 02 ) ..
~—e“E e 2(w=w0) - isin((w —wo)t/2) + ...
V2 (

w—wp) 2(w—uwp)?
To get from 87 to 88 we drop terms of order > Q2.

Let’s compare 88 to the exact solution 4 with initial conditions ag = by = \%, expanded

to second order in €.

a =

] o 0 ‘
7 <cos(w't/2) — z(ww—/wo) sin(w't/2) — Zw—/ sin(w’t/2)> ewt/?
Note w' = y/(w —wp)2 + 02 ~ w —wy + 2(0.; - With that approximation

1 ! — (1 — —QQ sin(w’ —
an~ 7 (cos(w t/2) —i(1 o= wo)Q) (W't/2)

sin(w't/2)> et/?

W — W

1 —t(w—wo 2 t/2 . QZ . ()
~ 7 (e (w—wots—ggy)t/2 Z(m) sin((w — wo)t/2) — - Z_ " sin((w — wo)t/2) ) €[4}

Sure enough the exact solution expanded to second order in €2 (Equation 89) is consistent
with the perturbative solution (Equation 88). The important take away is that the sec-

ond order frequency shift is the coefficient of the term linear in imaginary time (it). (See

Equation 84 - 86)

52

(ei(“”WO)t — 1) +..

)

(87)

(88)



The frequency derived from the perturbation theory

%6 1 Q2
)\ e 2— = — _
n+ ; (wo —w) + 2 oo =) (90)

and the exact frequency (Equation 14)

r_ N2 2\1/2 _ 1 0
w = ((wo — w)? + Q%) (wo w)+2(w0—w)2

(91)
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