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Abstract

Jason

The Fermilab Muon g−2 Experiment is currently collecting and analyzing data, where it has the

goals of measuring the muon anomaly with 140 parts-per-billion (ppb) precision and electric dipole

moment with at least 100 times more sensitivity than the previous measurement. The Fermilab

experiment uses the refurbished and upgraded BNL Muon g−2 storage ring system, where these

high precision measurements require a detailed understanding of the muon storage ring beam

and spin dynamics for determining systematic corrections and uncertainties. The scintillating-

fiber beam monitor, straw tracker, and calorimeter systems provide information about the storage

ring beam, and detailed measurements and models of the storage ring guide fields have also been

produced. The following discussion provides an overview of the Muon g−2 storage ring beam and

spin dynamics, along with the associated systematic effects.
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I. INTRODUCTION

Jason

Muon dipole moment measurements [1–4] provide an important test of the Standard

Model (SM), where the Brookhaven National Laboratory (BNL) Muon g−2 Experiment is

the last completed experiment in a series of muon anomaly (aµ) and electric dipole moment

(dµ) measurements. The Fermi National Accelerator Laboratory (Fermilab) Muon g−2

Experiment [5] is currently collecting and analyzing data, where it has completed the first

physics data taking run (Run-1) and is now in the second physics data taking run (Run-2).

The Fermilab experiment can calculate aµ from [5]

aµ =

(
ge
2

mµ

me

ωa
〈ωp〉

)/(
µe
µp

)
, (1)

where ge is the electron g-factor, mµ/me is the muon-electron mass ratio, ωa is the anomalous

precession frequency, and µe/µp is the electron-proton magnetic moment ratio. The 〈ωp〉 in

Eq. (1) corresponds to the average magnetic field seen by the muons, where the field has

been written in terms of the corresponding free proton Larmor frequency because pulsed

nuclear magnetic resonance (NMR) is used to measure the field. Values for ge, mµ/me, and
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µe/µp can be obtained from CODATA [6], where these quantities have relative uncertainties

of 0.000 26, 22, and 3.0 ppb respectively. The Fermilab experiment will measure ωa and 〈ωp〉

to calculate the corresponding aµ.

The final BNL aµ value [7] has a relative statistical and systematic precision of 460 and

280 parts-per-billion (ppb) receptively, for a total precision of 540 ppb when adding the two

uncertainties in quadrature. There is a greater than 3σ difference between the BNL mea-

surement and SM prediction [7], which hints at the possibility of physics beyond the SM.

The Fermilab experiment has the goal of measuring aµ with a final statistical and system-

atic precision of 100 ppb respectively, for a total precision of 140 ppb when adding the two

uncertainties in quadrature. The 100 ppb statistical uncertainty is for ωa, as the statistical

uncertainty for 〈ωp〉 is negligible, and the ωa and 〈ωp〉 measurements are to each have a

70 ppb systematic precision. The BNL |dµ| < 1.8× 10−19 e cm (95 % C.L.) measurement

provides a factor of 5 improvement in sensitivity with respect to the previous limit, and

the Fermilab experiment has the goal improving the sensitivity by at least a 100 times with

respect to the BNL measurement.

Achieving a 70 ppb systematic precision for ωa requires a detailed understanding of the

muon storage ring beam and spin dynamics. The Fermilab experiment uses the refurbished

and upgraded BNL muon storage ring system, where the following discussion describes

the storage ring magnetic and electric guide fields, lattice functions, tunes, closed orbits,

polarized muon injection, and storage of the muons. The scintillating-fiber beam monitor

(FBM), straw tracker, and calorimeter systems are also discussed, as these systems provide

information about the storage ring beam. Finally, an overview of the known ωa systematic

effects that arise from beam and spin dynamics is also given.

DAVE RUBIN HAS Fast Rotation, Electric Field, and Pitch section as of

1/21/20

II. DETERMINING THE MOMENTUM DISTRIBUTION

???
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III. PITCH

A. Pitch Correction

David R.

The projection of polarization onto velocity is given by (Jackson 11.171)

d

dt
(β̂ · s) = − e

mc
s⊥·
[
aµ(β̂ ×B) +

(
aµ −

1

γ2 − 1

)
βE

]
. (2)

For the component of the spin that is precessing in the ρ, φ plane s = s(φ̂ cosωat+ ρ̂ sinωat).

Then for the ideal trajectory, Equation 2 becomes

d

dt
s cosωat = − e

mc
s sinωat(aµB)

and

ωa = − e

mc
aµB.

The dependence of ωa on the amplitude of vertical betatron oscillations appears in the term

β̂ ×B in Eq. (2). Introduce the vertical component of velocity as a small perturbation, so

that β̂ = cosψyφρ̂ + sinψyφŷ, where ψyφ is the angle of the trajectory of the muon in the

y − φ plane. φ̂ is the unit vector in the azimuthal direction. Then the contribution to ωa

due to the pitch for a particular trajectory is ∆ωa
ωa

= 〈(1 − cosψyφ)〉, where the 〈 〉 indicate

the average of (1− cosψyφ) along the trajectory. For small pitch angle, ψyφ � 1,

∆ωa
ωa
∼ 1

2
〈ψ2

yφ〉.

In the limit of strictly linear betatron motion, the angle of the trajectory in the y− φ plane

is modulated as

ψyφ(s) = ψ0 sinφy(s) =

√
a

βy
sinφy(s),

where φy(s) is the vertical betatron phase advance as a function of longitudinal position s

and

〈ψ2
yφ〉 =

1

2
ψ2

0 =
1

2

a

β

and the average is taken over many betatron periods. We do not measure the distri-

bution of amplitudes directly but rather the distribution of vertical offsets. Insofar as
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y =
√
aβ cosφ(s), then 〈y2〉 = 1

2
β〈a〉 and 〈a〉 = 2〈y2〉/β. Then averaged over betatron

phase and amplitude

〈ψ2
yφ〉 =

〈y2〉
β2

Finally the average correction to ωa due to the vertical betatron motion is

〈∆ωa
ωa
〉a ∼

1

2

〈y2〉
〈β〉2

.

〈β〉 = (
∫

accept
β(s)ds)/saccept is the average over the azimuthal acceptance of the tracking

chambers that measure the vertical distribution. In the continuous quad limit, where 1/βy =
√
n

R0
.

Cp = −n〈y
2〉

2R2
0

The vertical distribution of decay positrons is measured by the straw tracking chambers.

Tracks of positrons are extrapolated back to the parent muon decay point to determine the

vertical distribution of the muons as shown for a subset of the data in Fig. 1.

IV. ELECTRIC FIELD

A. E-field Correction

David R.

In the rest frame of the muon the transverse electic field manifests as a magnetic field and

alters the instantaneous percession frequency, as defined by the third term on the right hand

size of Eq. (2). It depends on muon momentum and the effect is minimized by operating

near the magic momentum, namely where aµ = 1
γ2−1

= aµ− m2

p2m
. The field of the ring magnet

is chosen so that the closed orbit of the magic momentum muon corresponds to the center

of the good field region. Then the fractional contribution to ωa is

Ce ∼ −2
∆p

pm

|〈~β × ~E〉|
Bc

, (3)

where pm is the magic momentum, and γ and β are evaluated at pm and averaged along

the trajectory of the muon. The electric field depends on transverse displacement in the

quadrupoles. Insofar as the field is linear in displacement, the average electric field along
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FIG. 1. Vertical projection of decay muons from straw trackers

the trajectory is proportional to the average radial displacement xe, namely the closed orbit.

The average radial electric field is given by

〈Er〉 = n

(
vsB

R0

)
xe, (4)

where n is the focusing index. The average radial displacement is

xe = η
∆p

p
.

Then the contribution to ωa due to electric field is

Ce ∼ −2β2n(1− n)
x2
e

R2
0

,

where η =∼ 1−n
R0

. Determination of the electric-field correction thus depends on measurement

of the equilibrium radial distribution.
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FIG. 2. Positron counts as a function of time as seen by all the calorimeters combined for the

Run–1 9–day data set for the time ranges: (a) 4-5, (b) 4-14, (d) 4-104 and (e) 4-500 µs with

respect to the beam injection. The time interval is 1 ns.

V. FAST ROTATION

The contribution to the measured precession frequency of the electric field depends on

the momentum distribution of the stored muon beam, or equivalently the equilibrium radial

distibution. The muon revolution frequency is inversely proportional to its momentum. A

technique [8] based on Fourier transform yields a frequency spectrum that can be correlated

with radius (circumference) and momentum. The fast rotation data is provided by the

calorimeters which measure the time dependence of the intensity of the decay positron

distribution. The positron counts from the 24 calorimeters are merged together with time

offset of T/24/calorimeter where T is the revolution period of the magic momentum muon.
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A. Fourier method

The intensity profile of a distribution with zero emittance, zero momentum spread and

zero bunch length, measured at a fixed point in the ring, is

I(t) =
∞∑
n=0

δ(t− t0 − nT ) (5)

where n includes all nonnegative integers. (For the moment we ignore the finite lifetime of

the muon.) If we extend Equation 5 to include all integers then I(t) is symmetric about

t = t0 and the Fourier transform is simply a cosine transform. The frequency spectrum is

the cyclotron frequency ωc = 2π/T and all of its harmonics.

F (ω) =
∞∑

n=−∞

cosnωT (6)

The cosine transform of the signal for n ≥ 0, is equivalent to the Fourier transform of

the signal that includes a symmetric extension to negative times. The revolution period is

T (1 + ∆) for particles with fractional momentum offset ∆ and

I(t,∆) =
∑
n

δ(t− t0 −mT (1 + ∆)

and if ρ(∆) is the distribution of momentum offsets,

S(t) =
∑
n

∫
(ρ(δ)δ(t− t0 − nT (1 + ∆)d∆

The fast rotation signal is linear in particle momentum, and the cosine transform linear in

frequency so that

Ŝ(ω) =

∫
S(t) cosωt =

∫
cosωt

∑
n

∫
(ρ(δ)δ(t− t0 − nT (1 + ∆)d∆dt

The distribution of muons injected into the ring extends over some finite time duration.

Suppose that some fraction of the distribution corresponds to

S(t)early =
∑

δ(t− t0 −∆t− nT ).

S(t)early is not symmetric about t = t0 and the fourier transform of the signal symmetrized

about t = t0 will include a sine as well as a cosine term. However, if the injected distribution

is symmetric about t = t0 such that S(t− t0 −∆t)late = S(t− t0 + ∆t)early, that is

S(t) =
∑

δ(t− t0 −∆t− nT ) +
∑

δ(t− nT ) +
∑

δ(t− t0 + ∆t− nT ),

then the sine term vanishes once again. In practice we define t0 to be the time that best

symmetrizes the frequency distribution.
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1. Start time

The fast rotation signal is contaminated during the first few microseconds (a few tens of

revolutions) of the fill by background from positrons, protons, and deuterons. As a result

S(t) =
∑

n=nstart

∫
ρ(∆)δ(t− t0 − nT (1 + ∆))d∆

where nstart ∼ 25, and unphysical frequencies appear in the cosine transform. The particles

were there, we just could not see them. We refer to the distortion of the spectrum that arises

from the gap in our measurement of the fast rotation signal as ’background’. We write

Ŝ(ω) =

√
2

π

∫ ∞
ts

S(t) cosωtdt+

√
2

π

∫ ts

t0

S(t) cosωtdt

where S(t) is measured over the interval ts → t∞. Define

Ŝ ′(ω) =

√
2

π

∫ ∞
ts

S(t) cosωtdt

∆(ω) =

√
2

π

∫ ts

t0

S(t) cosωtdt

To a first approximation

S0(t) =

∫ ω+

ω−

Ŝ ′(ω′) cosω′tdω′

where the limits of integration correspond to the range of momenta within the physical

aperture of the ring. Then

∆(ω) =

√
2

π

∫ ts

t0

S0(t) cosωtdt

=
2

π

∫ ts

t0

∫ ω+

ω−

Ŝ ′(ω′) cosω′t cosωtdω′dt

=
1

π

∫ ω+

ω−

Ŝ ′(ω′)

(
sin(ω′ + ω)(ts − t0)

ω′ + ω
+

sin(ω′ − ω)(ts − t0)

ω′ − ω

)
dω′

∼ 1

π

∫ ω+

ω−

Ŝ ′(ω′)
sin(ω′ − ω)(ts − t0)

ω′ − ω
dω′

In practice we guess an appropriate functional form for Ŝ ′(ω) and fit the parameters of the

function to the background. If the spectrum is a Dirac comb at the revolution frequency

then from Equation 6 we see that a first approximation might be

Ŝ ′(ω) ∼
nstart∑
n=0

cosnωT =
nstart∑
n=0

cosn(ωc + δω)T =
nstart∑
n=0

cos(nδωT )
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As long as nstartδωT � 1→ nstart, then we can expand the cosine in an even power series,

and indeed in that limit, a polynomial fits the background. The spread in frequencies is

limited by the momentum acceptance of the storage ring to δω/ω0 < ±0.6%→ nstart � 25

turns or ∼ 4µs. More sophisticated functional forms have been demonstrated to give good

background fits for start times up to tstart ∼ 25µs in Monte Carlo simulation. Furth the

fitted spectrum is very nearly independent of start time for 4µs < tstart < 25µs.

B. 9 parameter fit

In addition to revolution frequencies the time dependence of the intensity of the positrons

will include the horizontal betatron oscillation frequency, the muon precession frequency, and

the muon decay time. In order to mitigate contamination of the fourier analysis of revolution

frequencies, we divide the fast rotation data by a nine parameter fitted function

N(t) = N0e
−t/τµ [1 + A · cos(ωat+ φ)] · e−t/τcbo [1 + Acbo · cos(ωcbot+ φcbo)]. (7)

where N0 is the number of detected positrons at t = 0, τµ is the muon boosted life-time

of about 64µs, A is the assymmetry of the spin precession modulation, ωa the anomalous

spin precession frequency and φ the phase of the modulation,Acbo, ωcbo and τcbo, and φcbo the

amplitude, frequency, ’lifetime’ and phase of the coherent betatron oscillation

An example of radial (closed orbit) distribution extracted by both the Fourier method and

the debunching analysis are shown in Fig. ??. The dependence of the E-field contribution to

ωa, on the radial offset of the closed orbit, superimposed on the the measured distribution

is shown in Fig. ??.

C. Momentum time correlation

VI. BETATRON OSCILLATIONS AND E-FIELD SYSTEMATIC

The contribution of the electric field correction to the measured ωa in IV A assumes that

the magnitude of the radial electric field increases linearly with displacement from the magic

radius, and that the betatron tune is independent of amplitude and momentum. Because

the plates that support the quadrupole voltage are flat, the electric field necessarily rolls

off near the plates. Effective vertical focusing, decreases with displacement from the central
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FIG. 3. Fit of the positron counts histogram as a function of time as seen by all the calorimeters

combined for the Run–1 9–day data set for the time ranges: (a) 4-80, (b) 4-130, (d) 4-230 and (e)

4-500 µs with respect to the beam injection. The time interval is 149 ns.

orbit. The vertical tune will decrease and the horizontal increase for large amplitudes and

for particles near the momentum aperture. As long as the electric field is antisymmetric

about the design orbit, the average electric field along the trajectory of the muon will be

independent of the amplitude of any betatron oscillation. However, because of the finite

curvature of the quadrupoles, the E-field correction to ωa there is necessarily a quadratic

dependence of electric field on displacement. The muon that circulates at the magic radius

with zero betatron oscillation amplitude will see zero electric field and no correction is

required. But the muon with that same momentum and finite betatron amplitude will

oscillate about the magic radius and its precession will indeed be effected by the E-field. If

the quad field were strictly antisymmetric about the magic radius and the betatron trajectory
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strictly symmetric, the net contribution would be zero. But neither condition is true. We

consider first the origin and effect of a sextupole like component of the ’perfect’ quadrupole

analytically and then evaluate the effect of nonlinearity associated with the geometry of the

quadrupoles, including misalgnment of the plates and votlage errors.

Electrostatic quadrupole nonlinearity

Consider the electric field in the quadrupoles. Laplace’s equation in two dimensions and

cartesian coordinates is

∇2V (x, y) =
∂2V

∂x2
+
∂2V

∂y2
= 0 (8)

The potential corresponding to a pure quadrupole field is one (of many) solutions.

V =
1

2
k(x2 − y2)

for some constant k. The electric field is

E = ~∇V = k(xî− yĵ)

and of course the divergence is zero. The electric field is linear in both x and y. Higher order

terms may appear (and indeed in the g-2 quads they well appear due to the geometry of the

plates), but the symmetry (in the 2-D cartesion limit permits only those terms that are odd

in x, y. In particular there is no sextupole (∼ kx2) dependence that would be symmetric in

displacement.

In the limit of finite curvature (as in the g-2 geometry) it is more appropriate to represent

the fields in cylindrical coordinates, where Laplace’s equation is

∇2V (ρ, z, φ) =

(
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2

∂2

∂θ2
+

∂2

∂z2

)
V = 0

We assume the quads are continuous so that there is no dependence on the angular coordinate

φ. Then the simplest possible solution is

V (ρ, z) = k

(
1

2
(
ρ2

ρ2
0

− 1)− ln
ρ

ρ0

−
(
z

ρ0

)2
)

and the electric field

~∇V =
1

2
k

(
(ρ− ρ2

0

ρ
)ρ̂− 2zẑ

)
(9)
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If we write ρ = ρ0 + x where ρ0 is the magic radius, then

~E ∼ k

(
(x− x2

2ρ0

+ . . .)ρ̂− zẑ
)

(10)

Evidently, Maxwell’s equations require a term quadratic in displacement. The quadratic

term is equivalent to a sextupole-like component that will effect the chromaticity, complicate

the correction of the E-field systematic, and possibly drive a third order resonance.

The above solution is not unique. One can write alternative solutions where the quadratic

(x2) term does not appear in the radial field, but then it always turns up as ((xz) in the

vertical direction. There exist no solutions without some sextupole-like component. A fit to

a 3 dimensional field map would properly identify this term.

h ere exists a symmetric component of the E-field which will contribute to the E-field

systematic.

Path length

The radial electric field along the trajectory of a muon with equilibrium radial offset xe

and betatron amplitude xβ is

Er(s) = k(xe + xβ)− 1

2ρ0

(xe + xβ)2 + . . .

Er(s) = k(ηδ + xβ)− 1

2ρ0

(ηδ + xβ)2 + . . .

where xe = ηδ = η∆p
p

and we assume the ’simple’ solution to Laplace’s equation discussed

above. The muon trajectory is along the path dl as shown in Figure 8. The path s is the

reference orbit. The average electric field along the trajectory is

〈Er(s)〉 = k〈
(
ηδ + xβ −

1

2ρ0

(ηδ + xβ)2

)
〉 (11)

=
k

L

∫
0

(
ηδ + xβ −

1

2ρ0

(ηδ + xβ)2

)
dl (12)

=
k

L

∫
0

(
ηδ + xβ −

1

2ρ0

(ηδ + xβ)2

)
(1 + xβ/ρ0)ds (13)

14D
R
A
FT



here in that last step we use dφ = ds
ρ0

= dl
(ρ0+x)

, and L is the length of the trajectory. Using

xβ = xβ0 cosφ(s), 〈Er〉 becomes

〈Er(s)〉 = k

∫ (
ηδ + xβ0 cosφ− 1

2ρ0

(ηδ + xβ0 cosφ)2

)
dφ(1 + x/ρ0)

∼ k

(
ηδ +

1

2ρ0

((ηδ)2 +
1

2
x2
β0) + . . .

)
(14)

There is contribution to the average electric field that scales quadratically with the betatron

amplitude.

E-field correction

Substitution of Equation 14 into 4 gives the correction to ωa due to fractional momentum

offset δ and betatron amplitude xβ0 as

Ce(δ, xβ0) ≈ −2δ
βk

cB

(
ηδ +

1

2ρ0

((ηδ)2 +
1

2
x2
β0)

)
≈ 2

βk

cB

(
ηδ2 +

1

2ρ0

(η2δ3 +
1

2
x2
β0δ)

)
Next we need to average Ce(δ, xβ0) over the entire momentum and CBO distribution.

〈Ce(δ, xβ0)〉 ≈ −2
βk

cB

(
〈x2

e〉
η

+
1

2ρ0

(
〈x3

e〉
η

+
1

2
〈x2

β0〉
〈xe〉
η

)

)
where 〈δ〉 = 〈xe〉/η. If 〈δ〉 = 〈xe〉/η = 0, and we assume that the betaron amplitude and

momentum offset are uncorrelated. In fact momentum offset and betaton amplitude are

strongly anti-correlated. We will return to this point.

〈Ce(δ, xβ0)〉 = −2
βk

cB
η〈δ2〉

and there is no contribution from the sextupole or path length terms. If 〈δ〉 6= 0 then the

fractional change to the E-field correction is

∆Ce
Ce
∼
〈x3

e〉+ 〈xe〉〈x2
β0〉/2

2〈x2
e〉ρ0

If we very conservatively estimate that 〈x2
β0
〉 < 452mm2, then

∆Ce
Ce

< 4.9−3

We find that the change in the efield correction due to the nonlinearity associated with the

curvature of the quad plates, is less than 0.5%.
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Quadrupole Nonlinearity

In the previous section we studied the effect of the curvature of the quadrupoles that is

the origin of a sextupole like (symmetric) electric field. The rectangular cross section of the

quadrupole geometry introduces nonlinearity. The electric field along the horizontal axis

(y = 0) is given by

Ex − iEy = (bn − ian)
xn

rn0
(15)

where r0 = 0.045 m and an, bn are given in Table ??. The multipoles are computed as a fit to

an azimuthal slice of the 3D Opera field map of the quads[? ]. The fit is for a ’horizontally’

pure basis[? ][? ] of Mcmillan functions. Figure VI shows the horizontal electric field

in the midplane. The values from the Opera map, and from the multipole expansion are

superimposed and evidently are in excellent agreement.

We can compare the fitted sextupole-like coefficient to our ’guess’ discussed above. We

found a solution to the Laplacian in the curved system as Equation 10. The ratio of

the coefficients of the quadratic and linear terms is rhyp − 1
2ρ0

= −0.0703m−1. But that

’hypothetical’ solution is not unique. After all, while we insisted on a form that satisfies

Maxwell’s equations, we made no attempt to also satisfy the boundary conditions. The

ratio based on the fit to the Opera field map, that satisfies both Maxwell and the boundary

conditions, taking the values from the table is rfit = b2
b1r0

= −2.71281× 103/1.01609× 106 =

−0.0593m−1, within 16% of our guess.

As was shown above,the effect of the sextupole-like component of the quadrupole, and the

asymmetry of the path length about the magic radius, is that the E-field correction depends

on betatron amplitude and nonlinearly on equilibrium radial offset. From Equations 11- 13

we see that the sextupole-like component and the path length contribute with opposite sign,

and the amplitude of the sextupole-like component is about 1/2 of the path length piece.

Based on measured equilbrium radial distribution we conclude that the contribution of the

sextupole-like component to the E-field correction is less than 1%.

There are in addition to the sextupole-like component higher order multipoles as evident

from the table. In particular we see in Fig. VI that the field gradient rolls off at large

amplitudes.

Since the quad plate is an equipotential surface, the component of the electric field parallel

to the plate vanishes near the surface. Then ~∇ · ~E = 0 → ∂E⊥
∂dx⊥

→ 0. Near the plates, the
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quad index n→ 0. We explore the implications in simulation.

EFIELD AND PITCH AND QUADRUPOLE NONLINEARITY

In smulation ωa is most directly determined by spin tracking. The trajectory of the muon

is established by numerically integrating the equations of motion, and the spin by integration

of the BMT equation along that trajectory. We would like to explore the contribution to ωa

numerically, due the electric field of the quads and the vertical pitching (vertical betatron

motion), so that we can incorporate nonlinearity that arises from the quadrupole geometry,

and alignment errors. Spin tracking includes both effects. But spin tracking is inconvenient

for at least 3 reasons

1. Integration of the BMT equation is computationally intensive (and slow).

2. The change in ωa due to the electric field and the pitch is of order 1 part in 107.

Extracting their contribution depends on the difference of large numbers, and subject

to error.

3. There is no simple way to distinguish contributions from electric field, and pitch, and

whatever else.

As an alternative to spin tracking, we revisit the expressions for the contributions to Efield

and pitch and proceed as follows.

Electric field contribution

Recall that electric field appears as

~ωa = − q

m

[
aµ ~B

(
aµ −

m2

p2

) ~β × ~E

c

]
(16)

Define φa =
∫ T

0
ωadt. In the absence of ~E, we compute φa by integrating ~B⊥ along the muon

trajectory. Evidently, the contribution from the the electric field to φa is given by

∆φE
φa

=

(
aµ −

m2

p2

)
1

c

∫ T

0

~β × ~Edt ≈ −2
∆p

p

1

c

∫ T

0

~β × ~Edt (17)
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where ∆p = p − pmagic. In the tracking code it is straightforward to compute the sums in

Equations 16 and 17. Then the electric field correction for the trajectory is

Ce(T ) = −2
∆p

p

1

T

∫ T ~β × ~E

Bc
dt (18)

(We assume that ~B is parallel to ~β × ~E.)

Pitch

Consider the trajectory shown in 10 of a muon executing betatron oscillations in the

vertical plane. The pitching angle is ψ0. The magnetic field is in the vertical direction and y0

is the associated vertical displacement. We are interested in the precession of the spin with

respect to the muon momentum and therefore its projection onto the plane that contains

the velocity and ~β × ~B. The component of the magnetic field along the perpendicular to

the plane is B⊥ = B cosψ. The spin tune, that is the advance of the spin phase per turn is

then

νspin =

∮
B⊥dl =

∮
B cosψdl (19)

where the integration is through a single turn. The path length of the pitching trajectory is

∮ √
dx2 + dy2 =

∮ √
1 +

(
dy

dx

)2

dx ∼
∮

1 +
1

2
ψ2

0 sin

(
2πνy
L

)2

) = L(1 +
1

4
ψ2

0) (20)

The pathlength increases with the square of the pitching angle. Therefore the spin tune is

independent of the pitching angle. On the other hand, the cyclotron frequency decreases

with pitching angle according to ωc(ψ0) ∼ ωc(0)(1− 1
4
ψ2) and then

ωa(ψ0) = ωa(0)(1− 1

4
ψ2

0)

Then

∆φp
φa

=
1

T

∫ T

(|B| − |β̂ ×B|)dt (21)
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A. Efield - Equivalence of spin tracking and integration of φa.

B. Pitch - Equivalence of spin tracking and integration of φa.

C. Misalignment and Voltage errors

SIMULATION OF EFIELD AND PITCH CONTRIBUTIONS TO ωa

In simulation, the electric field of each of the quad plates (inner, bottom, outer, top) is

based on a field map. The map for each plate is computed with OPERA, holding the other

three plates at zero potential. The field of the quadrupole is then a simple superposition of

the four maps. The maps that are implemented in the code are 2D azimuthal slices of the

full 3D map. Curvature of the plates is modeled correctly. End fringe fields are neglected.

As indicated in Fig. 18, the quad plates can be displaced and/or voltage errors introduced

on each plate. We explore the dependence of the contribution of the electric field, and pitch

to ωa on these alignment and field errors.

1. Implement the quad plate offsets and voltage errors in the BMAD model

2. Create a ’realistic’ distribution

3. Track the distribution through the injection channel and into the ring.

4. Track each muon until it decays.

5. For each muon

• Integrate ~β × ~E along the trajectory to determine the electric field contribution

to ωa

• Integrate (1 − |β × ~B|) along the trajectory to determine the contribution from

pitch

• Compute radial closed orbit < xe >

6. Use the ’measured’ radial and vertical coordinates (positions and times) at the decay

point to compute the betatron tunes for the distribution.
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7. Use the ’measured’ vertical coordinate (positions) at the decay point to determine

vertical distribution

The alignment of the plates is measured with an uncertainty of less than ±1mm. The

uncertainty in voltage is estimated to be within ±5%. A particular set of alignment and field

errors defines a configuration. For each of the four plates there are two possible displacement

errors (±1mm), and two possible voltage errors ±0.05V , for a total of NQ = 28 = 256

configurations for a single quad. Each configuration corresponds to a maximum set of

misalignments and field errors. There are eight quadrupoles and therefore NT = (28)8

configurations for all quads. There is significant repetition due to the geometric periodicity,

but even so there are far too many independent configurations to consider.
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FIG. 4. Fast rotation signal as a function of time as seen by all the calorimeters combined for

the Run–1 9–day data set for the time ranges: (a) 4-5, (b) 4-14, (d) 4-54, (e) 4-104, (f) 4-204 and

(g) 4-504 µs with respect to the beam injection. The time interval is 1 ns. The modulation with

a 35 µs period corresponds to the beam partially and slowly re-bunching due to its asymmetric

momentum distribution. This could potentially also be a sign of time-momentum correlation in

the incoming beam profile.
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FIG. 6. Frequency distributions: (a) cosine Fourier transform, and (b) corrected cosine Fourier

transform limited to the collimator aperture.
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FIG. 7. Frequency distributions: (a) cosine Fourier transform, and (b) corrected cosine Fourier

transform for the full frequency range used in the analysis.
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FIG. 8. Curvilinear coordinate system. The integrated path length for the part of the trajectory

at ρ > ρ0 is greater than the length of the path for ρ < ρ0.
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FIG. 21. Distribution of contribution from pitch to ωa for all permutations.
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