\relax \providecommand\hyper@newdestlabel[2]{} \providecommand\HyperFirstAtBeginDocument{\AtBeginDocument} \HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined \global\let\oldcontentsline\contentsline \gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} \global\let\oldnewlabel\newlabel \gdef\newlabel#1#2{\newlabelxx{#1}#2} \gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} \AtEndDocument{\ifx\hyper@anchor\@undefined \let\contentsline\oldcontentsline \let\newlabel\oldnewlabel \fi} \fi} \global\let\hyper@last\relax \gdef\HyperFirstAtBeginDocument#1{#1} \providecommand\HyField@AuxAddToFields[1]{} \providecommand\HyField@AuxAddToCoFields[2]{} \providecommand \oddpage@label [2]{} \babel@aux{english}{} \citation{cornell} \citation{tmcperf} \citation{daniel} \citation{background} \citation{userguide} \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{2}{section.1}\protected@file@percent } \citation{cornell} \citation{tmcperf} \citation{wiki} \citation{cornell} \newlabel{eq:efield}{{1}{3}{Introduction}{equation.1.1}{}} \newlabel{eq:xe2}{{2}{3}{Introduction}{equation.1.2}{}} \@writefile{toc}{\contentsline {section}{\numberline {2}Data set}{3}{section.2}\protected@file@percent } \@writefile{toc}{\contentsline {section}{\numberline {3}Fast Rotation signal}{4}{section.3}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Positron counts histogram}{4}{subsection.3.1}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Combination of the 24 calorimeters}{4}{subsection.3.2}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Wiggle fit}{4}{subsection.3.3}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Positron counts as a function of time as seen by all the calorimeters combined for the {Run--1}\ {9--day data set}\ for the time ranges: (a) 4-5, (b) 4-14, (d) 4-104 and (e) \unhbox \voidb@x \hbox {4-500 $\mu s$} with respect to the beam injection. The time interval is 1 ns.}}{5}{figure.1}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{5}{figure.1}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{5}{figure.1}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{5}{figure.1}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{5}{figure.1}\protected@file@percent } \newlabel{fig:allcalo_intensity}{{1}{5}{Positron counts as a function of time as seen by all the calorimeters combined for the \runo \ \sixty \ for the time ranges: (a) 4-5, (b) 4-14, (d) 4-104 and (e) \mbox {4-500 $\mu s$} with respect to the beam injection. The time interval is 1 ns}{figure.1}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Fast rotation signal}{5}{subsection.3.4}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Fit of the positron counts histogram as a function of time as seen by all the calorimeters combined for the {Run--1}\ {9--day data set}\ for the time ranges: (a) 4-80, (b) 4-130, (d) 4-230 and (e) 4-500 $\mu s$ with respect to the beam injection. The time interval is 149 ns.}}{6}{figure.2}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{6}{figure.2}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{6}{figure.2}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{6}{figure.2}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{6}{figure.2}\protected@file@percent } \newlabel{fig:allcalo_fit}{{2}{6}{Fit of the positron counts histogram as a function of time as seen by all the calorimeters combined for the \runo \ \sixty \ for the time ranges: (a) 4-80, (b) 4-130, (d) 4-230 and (e) 4-500 $\mu s$ with respect to the beam injection. The time interval is 149 ns}{figure.2}{}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Fast rotation signal as a function of time as seen by all the calorimeters combined for the {Run--1}\ {9--day data set}\ for the time ranges: (a) 4-5, (b) 4-14, (d) 4-54, (e) 4-104, \unhbox \voidb@x \hbox {(f) 4-204} and (g) 4-504 $\mu s$ with respect to the beam injection. The time interval is 1 ns. The modulation with a 35 $\mu s$ period corresponds to the beam partially and slowly re-bunching due to its asymmetric momentum distribution. This could potentially also be a sign of time-momentum correlation in the incoming beam profile.}}{7}{figure.3}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{7}{figure.3}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{7}{figure.3}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{7}{figure.3}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{7}{figure.3}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{7}{figure.3}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{7}{figure.3}\protected@file@percent } \newlabel{fig:allcalo_frs}{{3}{7}{Fast rotation signal as a function of time as seen by all the calorimeters combined for the \runo \ \sixty \ for the time ranges: (a) 4-5, (b) 4-14, (d) 4-54, (e) 4-104, \mbox {(f) 4-204} and (g) 4-504 $\mu s$ with respect to the beam injection. The time interval is 1 ns. The modulation with a 35 $\mu s$ period corresponds to the beam partially and slowly re-bunching due to its asymmetric momentum distribution. This could potentially also be a sign of time-momentum correlation in the incoming beam profile}{figure.3}{}} \citation{cornell} \citation{cornell} \citation{cornell} \citation{tmcperf} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Fast rotation signal as a function of time as seen by all the calorimeters combined for the {Run--1}\ {9--day data set}\ for the time ranges 0-10 $\mu s$ with respect to the beam injection. The time interval is 1 ns.}}{8}{figure.4}\protected@file@percent } \newlabel{fig:frs_0_10}{{4}{8}{Fast rotation signal as a function of time as seen by all the calorimeters combined for the \runo \ \sixty \ for the time ranges 0-10 $\mu s$ with respect to the beam injection. The time interval is 1 ns}{figure.4}{}} \@writefile{toc}{\contentsline {section}{\numberline {4}Nominal analysis}{8}{section.4}\protected@file@percent } \newlabel{sec:nominal}{{4}{8}{Nominal analysis}{section.4}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Choice of the \ensuremath {t_{s}}\ parameter}{8}{subsection.4.1}\protected@file@percent } \newlabel{sec:tsopt}{{4.1}{8}{Choice of the \ts \ parameter}{subsection.4.1}{}} \citation{cornell} \citation{aaron} \citation{cornell} \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Choice of the \ensuremath {t_{m}}\ parameter}{9}{subsection.4.2}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Choice of the \ensuremath {t_{0}}\ parameter}{9}{subsection.4.3}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {4.4}Frequency distribution}{9}{subsection.4.4}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {4.5}Radial distribution}{9}{subsection.4.5}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {4.6}Electric field correction estimation}{10}{subsection.4.6}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Results of the four iterations (from top to bottom) of the \ensuremath {t_{0}}\ optimization procedure. The figures on the left show the cosine Fourier transform with its cardinal sine background fit for the optimum \ensuremath {t_{0}}\ value. The figures on the right show the $\chi ^2$ distribution of the background fit as a function of \ensuremath {t_{0}}. The optimized \ensuremath {t_{0}}\ value after four iterations is 128.091 ns.}}{11}{figure.5}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{11}{figure.5}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{11}{figure.5}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{11}{figure.5}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{11}{figure.5}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{11}{figure.5}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{11}{figure.5}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(g)}{\ignorespaces {}}}{11}{figure.5}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(h)}{\ignorespaces {}}}{11}{figure.5}\protected@file@percent } \newlabel{fig:t0opt}{{5}{11}{Results of the four iterations (from top to bottom) of the \tz \ optimization procedure. The figures on the left show the cosine Fourier transform with its cardinal sine background fit for the optimum \tz \ value. The figures on the right show the $\chi ^2$ distribution of the background fit as a function of \tz . The optimized \tz \ value after four iterations is 128.091 ns}{figure.5}{}} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Optimum cardinal sine background fit to the cosine Frequency distribution.}}{12}{figure.6}\protected@file@percent } \newlabel{fig:bkgfit}{{6}{12}{Optimum cardinal sine background fit to the cosine Frequency distribution}{figure.6}{}} \@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Frequency distributions: (a) cosine Fourier transform, and (b) corrected cosine Fourier transform limited to the collimator aperture.}}{12}{figure.7}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{12}{figure.7}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{12}{figure.7}\protected@file@percent } \newlabel{fig:freq}{{7}{12}{Frequency distributions: (a) cosine Fourier transform, and (b) corrected cosine Fourier transform limited to the collimator aperture}{figure.7}{}} \@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Frequency distributions: (a) cosine Fourier transform, and (b) corrected cosine Fourier transform for the full frequency range used in the analysis.}}{13}{figure.8}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{13}{figure.8}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{13}{figure.8}\protected@file@percent } \newlabel{fig:freq2}{{8}{13}{Frequency distributions: (a) cosine Fourier transform, and (b) corrected cosine Fourier transform for the full frequency range used in the analysis}{figure.8}{}} \@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Radial distribution in the beam coordinate limited to the collimator aperture.}}{14}{figure.9}\protected@file@percent } \newlabel{fig:rad_beam}{{9}{14}{Radial distribution in the beam coordinate limited to the collimator aperture}{figure.9}{}} \@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Radial distribution in the ring coordinate: (a) limited to the collimator aperture, and (b) not limited to the collimator aperture but to the full range of the analysis.}}{15}{figure.10}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{15}{figure.10}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{15}{figure.10}\protected@file@percent } \newlabel{fig:rad_ring}{{10}{15}{Radial distribution in the ring coordinate: (a) limited to the collimator aperture, and (b) not limited to the collimator aperture but to the full range of the analysis}{figure.10}{}} \@writefile{toc}{\contentsline {section}{\numberline {5}Per-calorimeter and per-bunch analysis}{16}{section.5}\protected@file@percent } \newlabel{sec:per_calobunch}{{5}{16}{Per-calorimeter and per-bunch analysis}{section.5}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Per-calorimeter analysis}{16}{subsection.5.1}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces Optimized \ensuremath {t_{0}}\ value as a function of calorimeter number. The black line is a linear fit to the data point. The fit results gives the \ensuremath {t_{0}}\ variation as a function of calorimeter number: $t_0 = 6.218(2) \cdot \text {Calo}~\# + 121.85(2)$ ns.}}{17}{figure.11}\protected@file@percent } \newlabel{fig:t0_vs_caloNum}{{11}{17}{Optimized \tz \ value as a function of calorimeter number. The black line is a linear fit to the data point. The fit results gives the \tz \ variation as a function of calorimeter number: $t_0 = 6.218(2) \cdot \text {Calo}~\# + 121.85(2)$ ns}{figure.11}{}} \@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces Radial distributions for all the 24 calorimeters overlaid.}}{17}{figure.12}\protected@file@percent } \newlabel{fig:rad_allcalos}{{12}{17}{Radial distributions for all the 24 calorimeters overlaid}{figure.12}{}} \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Per-calorimeter results of the fast rotation analysis.}}{19}{table.1}\protected@file@percent } \newlabel{tab:results_percalo}{{1}{19}{Per-calorimeter results of the fast rotation analysis}{table.1}{}} \@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces Analysis results of the fast rotation analysis per-calorimeter: (a) $x_e$, (b) $\sigma $, and (c) $C_E$. The error bars show the statistical uncertainty (see Sec.~\ref {sec:stat_percalo}).}}{20}{figure.13}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{20}{figure.13}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{20}{figure.13}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{20}{figure.13}\protected@file@percent } \newlabel{fig:results_percalo}{{13}{20}{Analysis results of the fast rotation analysis per-calorimeter: (a) $x_e$, (b) $\sigma $, and (c) $C_E$. The error bars show the statistical uncertainty (see Sec.~\ref {sec:stat_percalo})}{figure.13}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Per-bunch analysis}{21}{subsection.5.2}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {14}{\ignorespaces Radial distributions for all the 8 bunches overlaid.}}{22}{figure.14}\protected@file@percent } \newlabel{fig:rad_allbunches}{{14}{22}{Radial distributions for all the 8 bunches overlaid}{figure.14}{}} \@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Per-bunch results of the fast rotation analysis.}}{22}{table.2}\protected@file@percent } \newlabel{tab:results_perbunch}{{2}{22}{Per-bunch results of the fast rotation analysis}{table.2}{}} \@writefile{lof}{\contentsline {figure}{\numberline {15}{\ignorespaces Analysis results of the fast rotation analysis per-bunch: (a) \ensuremath {t_{0}}\tmspace +\thinmuskip {.1667em} (b) $x_e$, (c) $\sigma $, and (d) $C_E$. The error bars show the statistical uncertainty (see Sec.~\ref {sec:stat_perbunch}).}}{23}{figure.15}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{23}{figure.15}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{23}{figure.15}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{23}{figure.15}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{23}{figure.15}\protected@file@percent } \newlabel{fig:results_perbunch}{{15}{23}{Analysis results of the fast rotation analysis per-bunch: (a) \tz \, (b) $x_e$, (c) $\sigma $, and (d) $C_E$. The error bars show the statistical uncertainty (see Sec.~\ref {sec:stat_perbunch})}{figure.15}{}} \@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Statistical uncertainty on the results of the nominal, per-bunch and per-calorimeter fast rotation analysis.}}{24}{table.3}\protected@file@percent } \newlabel{tab:stat}{{3}{24}{Statistical uncertainty on the results of the nominal, per-bunch and per-calorimeter fast rotation analysis}{table.3}{}} \@writefile{toc}{\contentsline {section}{\numberline {6}Statistical uncertainty}{24}{section.6}\protected@file@percent } \newlabel{sec:stat}{{6}{24}{Statistical uncertainty}{section.6}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Nominal analysis}{24}{subsection.6.1}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {6.2}Per-bunch analysis}{24}{subsection.6.2}\protected@file@percent } \newlabel{sec:stat_perbunch}{{6.2}{24}{Per-bunch analysis}{subsection.6.2}{}} \@writefile{lof}{\contentsline {figure}{\numberline {16}{\ignorespaces Diagram of the procedure for estimating the statistical uncertainty on the fast rotation results.}}{25}{figure.16}\protected@file@percent } \newlabel{fig:stat}{{16}{25}{Diagram of the procedure for estimating the statistical uncertainty on the fast rotation results}{figure.16}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.3}Per-calorimeter analysis}{25}{subsection.6.3}\protected@file@percent } \newlabel{sec:stat_percalo}{{6.3}{25}{Per-calorimeter analysis}{subsection.6.3}{}} \@writefile{lof}{\contentsline {figure}{\numberline {17}{\ignorespaces Analysis results of the pseudo data for the nominal analysis: (a) optimized \ensuremath {t_{0}}, \unhbox \voidb@x \hbox {(b) $x_e$}, (c) $\sigma $, and (d) $C_E$. The title of each histogram corresponds to the mean and standard deviation of the distribution.}}{26}{figure.17}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{26}{figure.17}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{26}{figure.17}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{26}{figure.17}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{26}{figure.17}\protected@file@percent } \newlabel{fig:stat_nominal}{{17}{26}{Analysis results of the pseudo data for the nominal analysis: (a) optimized \tz , \mbox {(b) $x_e$}, (c) $\sigma $, and (d) $C_E$. The title of each histogram corresponds to the mean and standard deviation of the distribution}{figure.17}{}} \@writefile{lof}{\contentsline {figure}{\numberline {18}{\ignorespaces Statistical correlation between: (a) $C_E$, $\sigma $ and $x_e$, (b) $\Delta t_0 = -t_0$, $\sigma $ and $x_e$, (c) $\sigma $ and \ensuremath {t_{0}}, (d) $x_e$ and \ensuremath {t_{0}}, and (e) $\sigma $ and $x_e$, The title of the 2D histograms corresponds to the correlation coefficient between the two variables.}}{27}{figure.18}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{27}{figure.18}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{27}{figure.18}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{27}{figure.18}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{27}{figure.18}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{27}{figure.18}\protected@file@percent } \newlabel{fig:stat_corr}{{18}{27}{Statistical correlation between: (a) $C_E$, $\sigma $ and $x_e$, (b) $\Delta t_0 = -t_0$, $\sigma $ and $x_e$, (c) $\sigma $ and \tz , (d) $x_e$ and \tz , and (e) $\sigma $ and $x_e$, The title of the 2D histograms corresponds to the correlation coefficient between the two variables}{figure.18}{}} \@writefile{lof}{\contentsline {figure}{\numberline {19}{\ignorespaces Analysis results of the pseudo data for bunch \#0: (a) optimized \ensuremath {t_{0}}, (b) $x_e$, (c) $\sigma $, and (d) $C_E$. The title of each histogram corresponds to the mean and standard deviation of the distribution.}}{28}{figure.19}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{28}{figure.19}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{28}{figure.19}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{28}{figure.19}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{28}{figure.19}\protected@file@percent } \newlabel{fig:stat_perbunch}{{19}{28}{Analysis results of the pseudo data for bunch \#0: (a) optimized \tz , (b) $x_e$, (c) $\sigma $, and (d) $C_E$. The title of each histogram corresponds to the mean and standard deviation of the distribution}{figure.19}{}} \@writefile{lof}{\contentsline {figure}{\numberline {20}{\ignorespaces Analysis results of the pseudo data for calorimeter \#1: (a) optimized \ensuremath {t_{0}}, \unhbox \voidb@x \hbox {(b) $x_e$}, \unhbox \voidb@x \hbox {(c) $\sigma $} and (d) $C_E$. The title of each histogram corresponds to the mean and standard deviation of the distribution.}}{29}{figure.20}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{29}{figure.20}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{29}{figure.20}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{29}{figure.20}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{29}{figure.20}\protected@file@percent } \newlabel{fig:stat_percalo}{{20}{29}{Analysis results of the pseudo data for calorimeter \#1: (a) optimized \tz , \mbox {(b) $x_e$}, \mbox {(c) $\sigma $} and (d) $C_E$. The title of each histogram corresponds to the mean and standard deviation of the distribution}{figure.20}{}} \citation{tmcperf} \citation{tmcperf} \@writefile{lot}{\contentsline {table}{\numberline {4}{\ignorespaces Estimation of the \ensuremath {t_{0}}\ systematic uncertainty. The systematic uncertainty is estimated as half the maximum variation between the results from the three background fit functions.}}{30}{table.4}\protected@file@percent } \newlabel{tab:t0syst}{{4}{30}{Estimation of the \tz \ systematic uncertainty. The systematic uncertainty is estimated as half the maximum variation between the results from the three background fit functions}{table.4}{}} \@writefile{toc}{\contentsline {section}{\numberline {7}Systematic uncertainties}{30}{section.7}\protected@file@percent } \newlabel{sec:syst}{{7}{30}{Systematic uncertainties}{section.7}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.1}\ensuremath {t_{0}}\ systematic}{30}{subsection.7.1}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {21}{\ignorespaces Results of the fast rotation analysis as a function of \ensuremath {t_{0}}\ for a 1 ns range: (a) $x_e$, (b) $\sigma $, and (c) $C_E$.}}{31}{figure.21}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{31}{figure.21}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{31}{figure.21}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{31}{figure.21}\protected@file@percent } \newlabel{fig:t0scan}{{21}{31}{Results of the fast rotation analysis as a function of \tz \ for a 1 ns range: (a) $x_e$, (b) $\sigma $, and (c) $C_E$}{figure.21}{}} \citation{tmcperf} \citation{tmcperf} \@writefile{toc}{\contentsline {subsection}{\numberline {7.2}\ensuremath {t_{s}}\ systematic}{32}{subsection.7.2}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {22}{\ignorespaces Results of the fast rotation analysis as a function of \ensuremath {t_{s}}\ for a 30 $\mu s$ range using the triangle-based background fit function: (a) $x_e$, (b) $\sigma $, and (c) $C_E$.}}{33}{figure.22}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{33}{figure.22}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{33}{figure.22}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{33}{figure.22}\protected@file@percent } \newlabel{fig:tsscan}{{22}{33}{Results of the fast rotation analysis as a function of \ts \ for a 30 $\mu s$ range using the triangle-based background fit function: (a) $x_e$, (b) $\sigma $, and (c) $C_E$}{figure.22}{}} \@writefile{lof}{\contentsline {figure}{\numberline {23}{\ignorespaces Results of the fast rotation analysis as a function of \ensuremath {t_{s}}\ for a 25 $\mu s$ range using the triangle-based background fit function: (a) $x_e$, (b) $\sigma $, and (c) $C_E$.}}{34}{figure.23}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{34}{figure.23}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{34}{figure.23}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{34}{figure.23}\protected@file@percent } \newlabel{fig:tsscan2}{{23}{34}{Results of the fast rotation analysis as a function of \ts \ for a 25 $\mu s$ range using the triangle-based background fit function: (a) $x_e$, (b) $\sigma $, and (c) $C_E$}{figure.23}{}} \@writefile{lof}{\contentsline {figure}{\numberline {24}{\ignorespaces Background fit of the cosine Fourier transform using the triangle-based function: (a) $t_s=5~\mu s$, (b) $t_s=10~\mu s$, (c) $t_s=15~\mu s$, (d) $t_s=20~\mu s$, (e) $t_s=25~\mu s$, (f) $t_s=30~\mu s$.}}{35}{figure.24}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{35}{figure.24}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{35}{figure.24}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{35}{figure.24}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{35}{figure.24}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{35}{figure.24}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{35}{figure.24}\protected@file@percent } \newlabel{fig:bkgfit_ts}{{24}{35}{Background fit of the cosine Fourier transform using the triangle-based function: (a) $t_s=5~\mu s$, (b) $t_s=10~\mu s$, (c) $t_s=15~\mu s$, (d) $t_s=20~\mu s$, (e) $t_s=25~\mu s$, (f) $t_s=30~\mu s$}{figure.24}{}} \@writefile{lof}{\contentsline {figure}{\numberline {25}{\ignorespaces Background fit information for the triangle-based function: (a) $\chi ^2$/d.o.f. as a function of \ensuremath {t_{s}}, (b) fit residuals as a function of \ensuremath {t_{s}}, and (c) $\chi ^2$/d.o.f. as a function of fit residuals.}}{36}{figure.25}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{36}{figure.25}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{36}{figure.25}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{36}{figure.25}\protected@file@percent } \newlabel{fig:tmc3_bkgfitinfo_ts}{{25}{36}{Background fit information for the triangle-based function: (a) $\chi ^2$/d.o.f. as a function of \ts , (b) fit residuals as a function of \ts , and (c) $\chi ^2$/d.o.f. as a function of fit residuals}{figure.25}{}} \citation{cornell} \citation{tmcperf} \@writefile{toc}{\contentsline {subsection}{\numberline {7.3}\ensuremath {t_{m}}\ systematic}{37}{subsection.7.3}\protected@file@percent } \newlabel{sec:syst_tm}{{7.3}{37}{\tm \ systematic}{subsection.7.3}{}} \@writefile{lof}{\contentsline {figure}{\numberline {26}{\ignorespaces Results of the fast rotation analysis for $t_s=4~\mu s$ as a function of \ensuremath {t_{m}}: (a) $x_e$, (b) $\sigma $, and (c) $C_E$.}}{38}{figure.26}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{38}{figure.26}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{38}{figure.26}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{38}{figure.26}\protected@file@percent } \newlabel{fig:tmscan}{{26}{38}{Results of the fast rotation analysis for $t_s=4~\mu s$ as a function of \tm : (a) $x_e$, (b) $\sigma $, and (c) $C_E$}{figure.26}{}} \@writefile{lof}{\contentsline {figure}{\numberline {27}{\ignorespaces Results of the fast rotation analysis for $t_s=4~\mu s$ as a function of \ensuremath {t_{m}}\ for $t_m>150$ $\mu s$: (a) $x_e$, (b) $\sigma $, and (c) $C_E$.}}{39}{figure.27}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{39}{figure.27}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{39}{figure.27}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{39}{figure.27}\protected@file@percent } \newlabel{fig:tmscan2}{{27}{39}{Results of the fast rotation analysis for $t_s=4~\mu s$ as a function of \tm \ for $t_m>150$ $\mu s$: (a) $x_e$, (b) $\sigma $, and (c) $C_E$}{figure.27}{}} \@writefile{lof}{\contentsline {figure}{\numberline {28}{\ignorespaces Background fit quality as a function of \ensuremath {t_{m}}: (a) $\chi ^2$/d.o.f., and (b) fit residuals.}}{40}{figure.28}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{40}{figure.28}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{40}{figure.28}\protected@file@percent } \newlabel{fig:tmscan_res}{{28}{40}{Background fit quality as a function of \tm : (a) $\chi ^2$/d.o.f., and (b) fit residuals}{figure.28}{}} \@writefile{lof}{\contentsline {figure}{\numberline {29}{\ignorespaces Background fit quality as a function of \ensuremath {t_{m}}\ for $t_m>150$ $\mu s$: (a) $\chi ^2$/d.o.f., and (b) fit residuals.}}{41}{figure.29}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{41}{figure.29}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{41}{figure.29}\protected@file@percent } \newlabel{fig:tmscan_res2}{{29}{41}{Background fit quality as a function of \tm \ for $t_m>150$ $\mu s$: (a) $\chi ^2$/d.o.f., and (b) fit residuals}{figure.29}{}} \@writefile{lof}{\contentsline {figure}{\numberline {30}{\ignorespaces Background fit to the cosine Fourier transform for different \ensuremath {t_{m}}\ values: (a) 50, \unhbox \voidb@x \hbox {(b) 100}, (c) 150, (d) 200, (e) 400, and (f) 500 $\mu s$.}}{42}{figure.30}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{42}{figure.30}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{42}{figure.30}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{42}{figure.30}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{42}{figure.30}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{42}{figure.30}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{42}{figure.30}\protected@file@percent } \newlabel{fig:bkgfit_tm}{{30}{42}{Background fit to the cosine Fourier transform for different \tm \ values: (a) 50, \mbox {(b) 100}, (c) 150, (d) 200, (e) 400, and (f) 500 $\mu s$}{figure.30}{}} \citation{cornell} \citation{tmcperf} \citation{tmcperf} \citation{tmcperf} \@writefile{toc}{\contentsline {subsection}{\numberline {7.4}Frequency interval}{43}{subsection.7.4}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {31}{\ignorespaces Results of the fast rotation analysis as a function of the frequency interval: \unhbox \voidb@x \hbox {(a) $x_e$,} (b) $\sigma $, and (c) $C_E$.}}{44}{figure.31}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{44}{figure.31}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{44}{figure.31}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{44}{figure.31}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{44}{figure.31}\protected@file@percent } \newlabel{fig:freqscan}{{31}{44}{Results of the fast rotation analysis as a function of the frequency interval: \mbox {(a) $x_e$,} (b) $\sigma $, and (c) $C_E$}{figure.31}{}} \@writefile{lof}{\contentsline {figure}{\numberline {32}{\ignorespaces Background fit to the cosine Fourier transform for different frequency interval values: (a) 0.25, (b) 1.0, (c) 1.5, (d) 2.5, (e) 3.0, and (f) 3.75 kHz.}}{45}{figure.32}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{45}{figure.32}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{45}{figure.32}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{45}{figure.32}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{45}{figure.32}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{45}{figure.32}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{45}{figure.32}\protected@file@percent } \newlabel{fig:bkgfit_freqscan}{{32}{45}{Background fit to the cosine Fourier transform for different frequency interval values: (a) 0.25, (b) 1.0, (c) 1.5, (d) 2.5, (e) 3.0, and (f) 3.75 kHz}{figure.32}{}} \citation{tmcperf} \@writefile{lof}{\contentsline {figure}{\numberline {33}{\ignorespaces Background fit to the cosine Fourier transform for two background definition thresholds: (a) $N=1$, and (b) $N=5$.}}{46}{figure.33}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{46}{figure.33}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{46}{figure.33}\protected@file@percent } \newlabel{fig:bkgfit_n1n5}{{33}{46}{Background fit to the cosine Fourier transform for two background definition thresholds: (a) $N=1$, and (b) $N=5$}{figure.33}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.5}Background}{46}{subsection.7.5}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{\numberline {7.5.1}Background definition}{46}{subsubsection.7.5.1}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {34}{\ignorespaces Results of the fast rotation analysis as a function of the background threshold definition $N$: (a) $x_e$, (b) $\sigma $, (c) $C_E$, and (d) \ensuremath {t_{0}}.}}{47}{figure.34}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{47}{figure.34}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{47}{figure.34}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{47}{figure.34}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{47}{figure.34}\protected@file@percent } \newlabel{fig:bkgth_scan}{{34}{47}{Results of the fast rotation analysis as a function of the background threshold definition $N$: (a) $x_e$, (b) $\sigma $, (c) $C_E$, and (d) \tz }{figure.34}{}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {7.5.2}Background removal}{47}{subsubsection.7.5.2}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {35}{\ignorespaces Radial distribution with background removal for: (a) $N=1$, and (b) $N=5$.}}{48}{figure.35}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{48}{figure.35}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{48}{figure.35}\protected@file@percent } \newlabel{fig:bkgrmv}{{35}{48}{Radial distribution with background removal for: (a) $N=1$, and (b) $N=5$}{figure.35}{}} \@writefile{lof}{\contentsline {figure}{\numberline {36}{\ignorespaces Results of the fast rotation analysis as a function of the background removal threshold $N$: (a) $x_e$, (b) $\sigma $, and (c) $C_E$.}}{49}{figure.36}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{49}{figure.36}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{49}{figure.36}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{49}{figure.36}\protected@file@percent } \newlabel{fig:bkgrmvth_scan}{{36}{49}{Results of the fast rotation analysis as a function of the background removal threshold $N$: (a) $x_e$, (b) $\sigma $, and (c) $C_E$}{figure.36}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.6}Wiggle fit}{50}{subsection.7.6}\protected@file@percent } \newlabel{sec:syst_fit}{{7.6}{50}{Wiggle fit}{subsection.7.6}{}} \@writefile{lof}{\contentsline {figure}{\numberline {37}{\ignorespaces Radial distributions for fast rotation signals produced from a wiggle fit with: \unhbox \voidb@x \hbox {(a) 2 parameters,} (b) 5 parameters, and (d) 9 parameters.}}{51}{figure.37}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{51}{figure.37}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{51}{figure.37}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{51}{figure.37}\protected@file@percent } \newlabel{fig:syst_wiggle}{{37}{51}{Radial distributions for fast rotation signals produced from a wiggle fit with: \mbox {(a) 2 parameters,} (b) 5 parameters, and (d) 9 parameters}{figure.37}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.7}Positron energy threshold}{52}{subsection.7.7}\protected@file@percent } \newlabel{sec:syst_eth}{{7.7}{52}{Positron energy threshold}{subsection.7.7}{}} \@writefile{lof}{\contentsline {figure}{\numberline {38}{\ignorespaces Results of the fast rotation analysis as a function of the positron energy threshold: (a) $x_e$, (b) $\sigma $, (c) $C_E$, and (d) \ensuremath {t_{0}}.}}{53}{figure.38}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{53}{figure.38}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{53}{figure.38}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{53}{figure.38}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{53}{figure.38}\protected@file@percent } \newlabel{fig:eth_scan}{{38}{53}{Results of the fast rotation analysis as a function of the positron energy threshold: (a) $x_e$, (b) $\sigma $, (c) $C_E$, and (d) \tz }{figure.38}{}} \citation{tmcperf} \@writefile{lot}{\contentsline {table}{\numberline {5}{\ignorespaces Summary of the estimation of the systematic uncertainties and the total uncertainty assuming 0\% and 100\% correlation..}}{54}{table.5}\protected@file@percent } \newlabel{tab:syst}{{5}{54}{Summary of the estimation of the systematic uncertainties and the total uncertainty assuming 0\% and 100\% correlation.}{table.5}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.8}Summary}{54}{subsection.7.8}\protected@file@percent } \@writefile{toc}{\contentsline {section}{\numberline {8}Conclusion}{54}{section.8}\protected@file@percent } \bibcite{cornell}{1} \bibcite{tmcperf}{2} \bibcite{daniel}{3} \bibcite{background}{4} \bibcite{userguide}{5} \bibcite{wiki}{6} \bibcite{aaron}{7} \bibcite{tmc1}{8} \bibcite{tmc3}{9} \@writefile{toc}{\contentsline {section}{\numberline {A}Fast rotation histogram per-bunch}{57}{appendix.A}\protected@file@percent } \newlabel{app:frbunches}{{A}{57}{Fast rotation histogram per-bunch}{appendix.A}{}} \@writefile{toc}{\contentsline {section}{\numberline {B}Fast rotation histogram per-calorimeter}{57}{appendix.B}\protected@file@percent } \newlabel{app:frcalos}{{B}{57}{Fast rotation histogram per-calorimeter}{appendix.B}{}} \@writefile{toc}{\contentsline {section}{\numberline {C}Wiggle fit residuals}{57}{appendix.C}\protected@file@percent } \newlabel{app:fitres}{{C}{57}{Wiggle fit residuals}{appendix.C}{}} \@writefile{toc}{\contentsline {section}{\numberline {D}Fast rotation histogram for different positron energy thresholds}{57}{appendix.D}\protected@file@percent } \newlabel{app:frs_eth}{{D}{57}{Fast rotation histogram for different positron energy thresholds}{appendix.D}{}} \@writefile{lof}{\contentsline {figure}{\numberline {39}{\ignorespaces Fast rotation histograms from 4 to 5 $\mu s$ after injection for the 8 accelerator bunches: (a) to (h) are respectively bunches \#0 to \#7.}}{58}{figure.39}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{58}{figure.39}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{58}{figure.39}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{58}{figure.39}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{58}{figure.39}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{58}{figure.39}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{58}{figure.39}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(g)}{\ignorespaces {}}}{58}{figure.39}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(h)}{\ignorespaces {}}}{58}{figure.39}\protected@file@percent } \newlabel{fig:frbunches}{{39}{58}{Fast rotation histograms from 4 to 5 $\mu s$ after injection for the 8 accelerator bunches: (a) to (h) are respectively bunches \#0 to \#7}{figure.39}{}} \@writefile{lof}{\contentsline {figure}{\numberline {40}{\ignorespaces Fast rotation histograms from 4 to 5 $\mu s$ after injection for 8 calorimeters: (a) to (h) are respectively calorimeter \#1 to \#8.}}{59}{figure.40}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{59}{figure.40}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{59}{figure.40}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{59}{figure.40}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{59}{figure.40}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{59}{figure.40}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{59}{figure.40}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(g)}{\ignorespaces {}}}{59}{figure.40}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(h)}{\ignorespaces {}}}{59}{figure.40}\protected@file@percent } \newlabel{fig:frcalos18}{{40}{59}{Fast rotation histograms from 4 to 5 $\mu s$ after injection for 8 calorimeters: (a) to (h) are respectively calorimeter \#1 to \#8}{figure.40}{}} \@writefile{lof}{\contentsline {figure}{\numberline {41}{\ignorespaces Fast rotation histograms from 4 to 5 $\mu s$ after injection for 8 calorimeters: (a) to (h) are respectively calorimeter \#9 to \#16.}}{60}{figure.41}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{60}{figure.41}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{60}{figure.41}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{60}{figure.41}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{60}{figure.41}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{60}{figure.41}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{60}{figure.41}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(g)}{\ignorespaces {}}}{60}{figure.41}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(h)}{\ignorespaces {}}}{60}{figure.41}\protected@file@percent } \newlabel{fig:frcalos916}{{41}{60}{Fast rotation histograms from 4 to 5 $\mu s$ after injection for 8 calorimeters: (a) to (h) are respectively calorimeter \#9 to \#16}{figure.41}{}} \@writefile{lof}{\contentsline {figure}{\numberline {42}{\ignorespaces Fast rotation histograms from 4 to 5 $\mu s$ after injection for 8 calorimeters: (a) to (h) are respectively calorimeter \#17 to \#24.}}{61}{figure.42}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{61}{figure.42}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{61}{figure.42}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{61}{figure.42}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{61}{figure.42}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{61}{figure.42}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{61}{figure.42}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(g)}{\ignorespaces {}}}{61}{figure.42}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(h)}{\ignorespaces {}}}{61}{figure.42}\protected@file@percent } \newlabel{fig:frcalos1724}{{42}{61}{Fast rotation histograms from 4 to 5 $\mu s$ after injection for 8 calorimeters: (a) to (h) are respectively calorimeter \#17 to \#24}{figure.42}{}} \@writefile{lof}{\contentsline {figure}{\numberline {43}{\ignorespaces Residuals of the 9-parameter wiggle fit for six different time window: (a) 30-31, (b) 30-40, (c) 30-80, (d) 30-130, (e) 30-230 and (f) 30-300 $\mu s$. The start time of the fit is \unhbox \voidb@x \hbox {30 $\mu s$}.}}{62}{figure.43}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{62}{figure.43}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{62}{figure.43}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{62}{figure.43}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{62}{figure.43}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{62}{figure.43}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{62}{figure.43}\protected@file@percent } \newlabel{fig:res_fit}{{43}{62}{Residuals of the 9-parameter wiggle fit for six different time window: (a) 30-31, (b) 30-40, (c) 30-80, (d) 30-130, (e) 30-230 and (f) 30-300 $\mu s$. The start time of the fit is \mbox {30 $\mu s$}}{figure.43}{}} \@writefile{lof}{\contentsline {figure}{\numberline {44}{\ignorespaces Residuals of the 9-parameter wiggle fit for the time window 4-31 $\mu s$. The start time of the fit is 30 $\mu s$.}}{63}{figure.44}\protected@file@percent } \newlabel{fig:res_fit2}{{44}{63}{Residuals of the 9-parameter wiggle fit for the time window 4-31 $\mu s$. The start time of the fit is 30 $\mu s$}{figure.44}{}} \@writefile{lof}{\contentsline {figure}{\numberline {45}{\ignorespaces Fast rotation histograms from 4 to 5 $\mu s$ after injection for 8 positron energy thresholds: (a) 500, (b) 700, (c) 900, (d) 1100, (e) 1300, (f) 1500, (g) 1700, and (h) 1900 MeV.}}{64}{figure.45}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(a)}{\ignorespaces {}}}{64}{figure.45}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(b)}{\ignorespaces {}}}{64}{figure.45}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(c)}{\ignorespaces {}}}{64}{figure.45}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(d)}{\ignorespaces {}}}{64}{figure.45}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(e)}{\ignorespaces {}}}{64}{figure.45}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(f)}{\ignorespaces {}}}{64}{figure.45}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(g)}{\ignorespaces {}}}{64}{figure.45}\protected@file@percent } \@writefile{lof}{\contentsline {subfigure}{\numberline{(h)}{\ignorespaces {}}}{64}{figure.45}\protected@file@percent } \newlabel{fig:frs_eth}{{45}{64}{Fast rotation histograms from 4 to 5 $\mu s$ after injection for 8 positron energy thresholds: (a) 500, (b) 700, (c) 900, (d) 1100, (e) 1300, (f) 1500, (g) 1700, and (h) 1900 MeV}{figure.45}{}}