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Betatron Oscillations and E-field Systematic

Because of the finite curvature of the quadrupoles, the E-field correction to !a can depend on the
betatron amplitude as well as the momentum. The muon that circulates at the magic radius with zero
betatron oscillation amplitude will see zero electric field and no correction is required. But the muon
with that same momentum and finite betatron amplitude will oscillate about the magic radius and its
precession will indeed be effected by the E-field. If the quad field were strictly antisymmetric about the
magic radius and the betatron trajectory strictly symmetric, the net contribution would be zero. But
neither condition is true.

Electrostatic quadrupole nonlinearity

Consider the electric field in the quadrupoles. Laplace’s equation in two dimensions and cartesian
coordinates is
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The potential corresponding to a pure quadrupole field is one (of many) solutions.

V =
1

2
k(x2 � y2)

for some constant k. The electric field is

E = ~rV = k(xî� yĵ)

and of course the divergence is zero. The electric field is linear in both x and y. Higher order terms
may appear (and indeed in the g-2 quads they well appear due to the geometry of the plates), but the
symmetry (in the 2-D cartesion limit permits only those terms that are odd in x, y. In particular there
is no sextupole (⇠ kx2) dependence that would be symmetric in displacement.

In the limit of finite curvature (as in the g-2 geometry) it is more appropriate to represent the fields in
cylindrical coordinates, where Laplace’s equation is
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We assume the quads are continuous so that there is no dependence on the angular coordinate �. Then
the simplest possible solution is
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and the electric field
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If we write ⇢ = ⇢0 + x where ⇢0 is the magic radius, then
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Evidently, Maxwell’s equations require a term quadratic in displacement. The quadratic term is equiva-
lent to a sextupole component that will effect the chromaticity, complicate the correction of the E-field
systematic, and possibly drive a third order resonance.

The above solution is not unique. One can write alternative solutions where the quadratic (x2) term
does not appear in the radial field, but then it always turns up as ((xz) in the vertical direction. There
exist no solutions without some sextupole component. A fit to the Wanwei Wu field map would properly
identify this term.

Note that the sextupole component that inevitably goes along for the ride with a linear component, due
to the curvature of the quad plates, cannot not drive the 3⌫y = 1 resonance that appears in the quad
scans. That would require a skew sextupole that is forbidden by the quad symmetry, and would depend
on some misalignment.

In any event, there is a symmetric component of the E-field which will contribute to the E-field systematic.

Path length

The radial electric field along the trajectory of a muon with equilibrium radial offset xe and betatron
amplitude x� is
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where xe = ⌘� = ⌘�p
p and we assume the ’simple’ solution to Laplace’s equation discussed above. The

muon trajectory is along the path dl as shown in Figure 1. The path s is the reference orbit. The
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Figure 1: Curvilinear coordinate system. The integrated path length for the part of the trajectory at
⇢ > ⇢0 is greater than the length of the path for ⇢ < ⇢0.
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average electric field along the trajectory is
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here in that last step we use d� = ds
⇢0

= dl
(⇢0+x) , and L is the length of the trajectory. Using x� =

x�0 cos�(s), hEri becomes
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E-field correction

Following Miller (DocDB 11082) and Nguyen (DocDB 12047), the relative contribution of the E-field to
!a is
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If m2

p2
0
= aµ, that is if we choose the magnetic field so that the magic momentum muon is at the magic

radius, then
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Substitution of Equation 7 gives the correction to !a due to fractional momentum offset � and betatron
amplitude x�0 as
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Next we need to average Ce(�, x�0) over the entire momentum and CBO distribution.
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where h�i = hxei/⌘. If h�i = hxei/⌘ = 0, then
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and there is no contribution from the sextupole or path length terms. If h�i 6= 0 then the relative
adjustment to the E-field correction is
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If we suppose � is large (⇠ 0.001), h�2i small, (⇠ 10�7), and hx2
�0i/⌘2 is large (⇠ (0.04/(7)(8))2 ⇠

0.25⇥10�4), then the fractional error in the estimate is ⇠ 0.1, namely a 10% correction to the correction.

Now let’s return to Equation 8 but this time we suppose that the distribution is not centered at the
magic radius and choose p0 according to the Miller/Nguyen rule to minimize the E-field correction.

Then
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With Miller’s definition of ↵ = m2

p2
0
� aµ, and his finding that ↵ = 2aµ

hp�p0i
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= 2aµh�i minimizes the
E-field correction when the average momentum is not p0, the correction becomes
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The relative contribution to the E-field correction due to the finite betatron amplitude is
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Is this important? Probably not. (Remember that ⌘ ⇠ ⇢0/(1�n)). Note however that the hypothesized
sextupole component discussed above has opposite sign to and partially cancels the contribution from
the path length effect. The real sextupole component may be somewhat different. Also a magnetic
sextupole will similarly enhance (or at least complicate) the dependence of the E-field correction on
betatron amplitude.

Multipoles Fitted to 3-D Field Map

The electric field along the horizontal axis (y = 0) is given by

Ex � iEy = (bn � ian)
xn

rn0
(9)

where r0 = 0.045 m and an, bn are given in Table 1. The multipoles are computed as a fit to an azimuthal
slice of the 3D Opera field map of the quads[3]. The fit is for a ’horizontally’ pure basis[1][2] of Mcmillan
functions. Figure 3 shows the horizontal electric field in the midplane. The values from the Opera map,
and from the multipole expansion are superimposed and evidently are in excellent agreement.

We can compare the fitted sextupole-like coefficient to our ’guess’ discussed above. We found a solution
to the Laplacian in the curved system as Equation 3. The ratio of the coefficients of the quadratic



5

-10

-8

-6

-4

-2

0

2

4

6

8

10

-5 -4 -3 -2 -1 0 1 2 3 4 5

Ef
el
d
[k
V/
cm

]

x [cm]

Field map
Multipole Expansion

Figure 2: Electric field along the x-axis in the midplane (y=0). The green points

Figure 3: are computed from the multipole expansion using Equation 9 and the coefficients in Table
1. The ’purple’ curve (hidden by the green points) are the values from the field map.

Table 1:

Multipole Normal (bn) Skew (an)
1 1.01609E+06 -1.19899E+00
2 -2.71281E+03 7.71402E+00
3 -1.45524E+04 -1.50954E+01
4 -6.90244E+02 1.46521E+00
5 -5.23865E+03 4.35213E+01
6 1.00671E+02 -4.83666E+01
7 1.21107E+03 7.75800E+01
8 -1.43120E+02 4.99963E+00
9 -9.02621E+04 5.20048E+00
10 2.87638E+02 -3.47144E+01
11 5.36519E+03 3.43053E+01
12 1.05747E+02 2.39598E+00
13 8.00742E+02 -9.14390E+00

and linear terms is rhyp � 1
2⇢0

= �0.0703m�1. But that ’hypothetical’ solution is not unique. After all,
while we insisted on a form that satisfies Maxwell’s equations, we made no attempt to also satisfy the
boundary conditions. The ratio based on the fit to the Opera field map, that satisfies both Maxwell and
the boundary conditions, taking the values from the table is rfit = b2

b1r0
= �2.71281⇥103/1.01609⇥106 =

�0.0593m�1, within 16% of our guess.
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As was shown above,the effect of the sextupole-like component of the quadrupole, and the asymmetry
of the path length about the magic radius, is that the E-field correction depends on betatron amplitude.
From Equations 4- 6 we see that the sextupole-like component and the path length contribute with
opposite sign, and the amplitude of the sextupole-like component is about 1/2 of the path length piece.
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