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I. INTRODUCTION

The correlation of muon polarization with its transverse momentum is a consequence of the left-right asymmetry in
the decay of the pion. The π+ decays to a neutrino and a muon. Neutrinos are exclusively left-handed. Convervation
of angular momentum requires that in the pion rest frame, µ+ is likewise left-handed such that p̂µ · ŝµ = −1. The
angle φa between muon momentum and polarization is precisely π. The pion decays isotropically in its rest frame.
The momentum and polarization of the muon in the lab frame depends on the angle of the muon momentum in the
pion rest frame (θ∗ in Figure 1) with respect to the direction of travel of the pion[1].
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where φa = cos−1(̂sµ · p̂µ), pπ is the pion momentum and θ = tan−1(p⊥/p‖), and p⊥, and p‖ are the transverse
and longitudinal momenta of the muon with respect to the pion direction. In our experiment, with pπ ∼ 3.1 GeV,
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FIG. 1: θ∗ is the angle the muon momentum makes with the axis defined by the pion momentum in the pion rest
frame, where muon polarization sr and momentum pr are antiparallel. θ is the angle between muon momentum and

the pion direction in the lab frame and φa the angle between muon polarization and momentum.

Equation 2 becomes

sin(φa) ∼ 78.8 sin θ (2)

The muons are emitted in the lab frame in a forward cone of semi-angle[1]

tan θmax =
1
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With pπ ∼ 3.1GeV, θmax ∼ 12.7 mrad. Since θ < 12.7 mrad, Equation 2 can be further simplified to

sinφa ∼ 78.8x′0. (4)

where x′0 is the phase space coordinate of the muon’s trajectory at birth. The correlation of spin angle φa with phase
space x′0 is evident. The muon subsequently executes betatron oscillations as it propagates along the M2/M3 beam
line, around the delivery ring and to the g-2 storage ring. The precession of the spin in the bending magnets, which is
given by the spin tune νs = γaµ is independent of the transverse phase space coordinates. The effect of the bending
magnets will be to introduce an offset in Equation 4. The net bend in the straights is of course, zero. It is thus
anticipated that there will be a characteristic spin angle - transverse coordinate correlation in the distribution when
it is injected into the g-2 ring.
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If it happens, that the momentum acceptance of the storage ring is correlated with the phase space amplitude
(x, x′, y, y′), the resulting correlation of spin angle with momentum in the stored beam will contribute to the differential
decay systematic. Since injection is in the radial plane, and there is finite radial, but negligible vertical dispersion in
the storage ring, it is reasonable to suppose that the momentum acceptance is independent of vertical phase space
coordinates. It turns out that the momentum acceptance of a zero dispersion beam injected into a ring modeled with
continuous quadrupoles and no vertical motion is bounded as per the inequality[2? ]
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where xinj and x′inj are the displacement and angle at the injection point, θk is the kick angle, η and βr the ring
dispersion and β-function, and A the collimator aperture. In this simple model, momentum acceptance is indeed
correlated with xinj and x′inj . If, for example, x′inj is small, and θkβr < xinj , the minimum δmin and maximum δmax
accepted momenta increase with increasing xinj .

The result is a spin-momentum correlation in the stored beam and an early to late effect in the time spectra of the
muon decay positrons. The average shift in ωa is given by[3]
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where d〈φa〉
dx and d〈φa〉

dx′ describe the spin-transverse momentum correlation, d〈x〉
dγ and d〈x′〉

dγ the transverse momentum

- momentum acceptance correlation and d〈γ〉
dt the time dependence of the average momentum in the storage ring.

Note δ = γ−γ0
γ0

and d
dδ = 1

γ
dγ
dt . The first two terms in Equation 6 comprise the “spin angle - transverse coordinate

correlation” that are the subject of this paper. The explicit dependence of spin angle on momentum, the third term
in 6 is referred to as the “beam-line correlation”.

Note that the derivatives d〈x〉
dδ and d〈x′〉

dδ are not the dispersions η and η′ of the beam at the inflector exit, both
nominally zero. These derivatives are extracted from the distribution that only includes particles that are eventually
stored in the ring.

II. PROPAGATION OF THE SPIN-TRANSVERSE COORDINATE CORRELATION

The correlation of spin phase and transverse coordinates in the beam that arrives at the inflector exit depends on
the emittance of the parent pion beam, and the decay distribution, as well as the fraction of the muon population
originating in the M2/M3 straight as compared to the delivery ring. Near perfect correlation would result if all pions
decayed simultaneously at a single point in the M2/M3 straight, according to Equation 4. If on the other hand, half
of the pions decayed at betatron phase θβ and the same number decayed at θβ + π, there would be zero correlation
of spin phase and transverse coordinates further downstream, (assuming periodic β-function). It follows that if the
emittance of the pion beam is much smaller than that of the muon beam, and if the number of pions that decay per
unit length of the beam line is constant, and if the beam line is an integer number of betatron wavelengths, then the
correlation vanishes. Whatever residual correlation remains will depend on the betatron phase advance from origin to
observation point. We depend on Monte Carlo simulation of pion production, muon decay and transport to the g-2
ring to determine the spin phase - transverse coordinate correlation at the entrance to the storage ring at the inflector
exit.

For the record, it is worth noting a couple of other correlations that result from the pion decay kinematics. While
the dependence of spin phase on x and x′ (y and y′) of muons born at one location will be canceled by muons born
half a betatron wavelength downstream, the dependence of spin phase on invariant amplitude can not. If we suppose
that the phase space coordinates of the pion are x = x′ = y = y′0 at the moment of decay, and that all pions have the
same momentum, then the coordinates of the daughter muon are (x = 0, x′ = x′0, y = 0, y′ = y′0), and the invariant
amplitude of the propagating muon in the x and y planes, is

ax = (γxx
2 + 2αxxx

′ + βxx
′2)1/2

ay = (γyy
2 + 2αyyy

′ + βyy
′2)1/2

→ x′0
2

= a2
x/βx, y

′
0
2

= a2
y/βy (7)
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where γ, α, and β are the x and y twiss parameters and β0
x, β

0
y the β-function at the birth place of the muon. Combining

4 and 7, where generalizing to 2-dimensions x′0 →
√
x′0

2 + y′0
2, the absolute value of the spin angle can be written in

terms of the invariant amplitudes.
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(Here k =
2mµ

m2
π−m2

µ
pπ is a constant.) The invariant amplitude is of course just that and can be evaluated anywhere

independently of betatron phase advance. But 8 is positive definite and, information about the asymmetry is lost.
There is finally a correlation of the muon momentum with the decay angle and thus with the spin phase.

pµ = γrmµ

(
γ2(β + βr cos θ∗)2 + β2

r sin θ∗)2
)1/2

where βr is the velocity of the muon in the pion rest frame, γr = (1 − β2
r )−1/2, pπ = mπγβ and θ∗ the angle of the

muon in the pion rest frame (see Figure 1)
In summary we expect that the spin phase of muons with smallest invariant amplitude and highest momentum to

be neariest to π.

III. EXTRACTING SPIN - COORDINATE CORRELATION FROM SIMULATION

In practice the dependence of φa on x and x′ and that of x and x′ on γ are determined from simulation. We rely
on end to end simulations that begin with protons incident on the conversion target, pion production, and decay to
muons that are propagated to the end of M5, performed by Stratakis[4, 5] and Valetov[6, 7].

The BMAD[8] and gm2ringsim[9] codes are used to propagate the distribution from the end of the M5 line through
the injection channel to the inflector exit. The beam is ’steered’ into the hole in the backleg iron so that it intercepts
IBMS1 and IBMS2 as measured.[10] The measured position on IBMS3 fixes the inflector field. The particle distri-
butions at the inflector exit are compiled as density functions ρx(φ, x) and ρx′(φ, x′). Those density functions are
projected onto the x and x′ axis respectively to give us 〈φ(x)〉 and 〈φ(x′)〉, as shown in Figure 2. The average spin
angle φ, at each position x is

〈φ(x)〉 =

∫
φ(x)ρ(φ, x)dφ (9)

In order to extract derivatives for substitution into Equation 6, for example d〈φ〉
dx , fit a polynomial to the distribution

by minimizing

χ2 =

∫ ∫
(〈φ(x)〉 − (b+mx · x+ . . .))2ρ(φ, x)dx (10)

→
∑
ij

(φi − (b+mx · x+ . . .))2Nij (11)

The dependence of φa on transverse coordinate is very nearly linear and a first order polynomial fit is adequate to
the task of computing derivatives

IV. TRANSVERSE COORDINATE - MOMENTUM CORRELATION

The derivatives d〈x〉
dδ and d〈x′〉

dδ characterize the dependence of angle and offset of a trajectory at the inflector exit
on the storage ring’s momentum acceptance. As noted above, inspection of the the simple injection model embodied
in the inequality 5 suggests a linear relationship between momentum acceptance and offset xinf and a quadratic
dependence on x′inf . We rely on tracking simulations that include all of the details omitted in the simple model,
to determine 〈x(δ)〉 and 〈x′(δ)〉. Particles that circulate for at least 4 µs are ’captured’. For each particle that
is captured we note its momentum as well as its displacement and angle at the inflector exit to generate density
functions Nx(x, δ) and Nx′(x′, δ), examples of which are shown in Figures 3. The projection of the density functions
onto the x and x′ axis respectively are shown in Figures 4. We find that the dependence of x, x′ on momentum is
distinctly nonlinear. This is at least in part because the momentum acceptance depends on the kicker field as well
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FIG. 2: Average spin angle as a function of displacement, 〈φ(x)〉. d〈φ〉
dx = 0.927± 0.1 rad/m(left). Average spin angle

as a function of angle, 〈φ(x′)〉. d〈φ〉
dx′ = 1.159± 0.149 (right).
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FIG. 3: Nx(x, δ) is the number of particles in the stored beam with momentum δ that exited the inflector at offset
x. Nx′(x′, δ) is the number of particles in the stored beam with momentum δ that exited the inflector at angle x′.

as the transverse coordinates, and the kicker field has a complicated time dependence. We find that a third order
polynomial gives a reasonable fit to the simulated data.

The derivatives

d〈x〉
dδ

= p1 + 2p2δ + 3p3δ
2 =

(
0.368 + 2(69.2)δ + 3(62871.1)δ2

)
m (12)

d〈x′〉
dδ

=
(
0.1606 + 2(184.28)δ + 3(−6241.2)δ2

)
rad (13)

Using[3]

d〈γ(t)〉
dt

=
σ2

µ2τ
, (14)

the time dependence of the average momentum of the stored beam is given by

〈γ(t)〉 = 〈γ(t = 0)〉+
σ2

µ2τ
t (15)

→ 〈δ(t)〉 =
1

γ0
(〈γ(0)〉 − γ0 +

σ2

µ2τ
= 〈δ(0)〉+

1

γ0

σ2

µ2τ
t (16)

(where σ and µ are the width and average beam energy and τ is the lifetime in the rest frame), allowing replacement
of δ on the right hand size of Equations 12 and 13. 〈δ(t)〉 is plotted in Figure 5(left)). The derivatives are then
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FIG. 4: Average offset 〈x(δ)〉 (left) and angle 〈x′(δ)〉 (right) as a function of momentum for particles that are stored,
and accompanying best fit third order polynomial.

combined according to Equation 6 to give the time dependent shift of ωa that is shown in Figure 5(right).

〈∆ωa(t)〉 =

(
d〈φa〉
dx

d〈x〉
dδ

(t) +
d〈φa〉
dx′

d〈x′〉
dδ

(t)

)
1
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(17)

It is clear from Figure 5(right) that the variation in the frequency shift with time is negligibly small. The reason for
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FIG. 5: Average momentum of the stored beam versus time (Equation 16(left). The purple curve in the plot on the

right is the fractional shift of ωa versus time (Equation 17) and the green curve is the time average 1
T

∫ T
0

∆ωa
ωa

(t)dt

that is that the variation of the average energy with time (Figure 5(left)) is so small. At t = 0,

∆ωa
ωa

= 9.2± 1.2 ppb (18)

V. DEPENDENCIES

We have performed simulations with a variety of configurations(tunings)[? ] of the injection parameters in order to
explore the sensitivity of the distributions ρx(φ, x), ρx′(φ, x′) and their projections in Figures 2, and of the distributions
Nx(x, δ) and Nx′(x′, δ) in Figures 3 and their projections 4. In particular, inflector field is varied ±1%, thus changing
the angle at which the beam exits the inflector, the kicker field and kicker timing is varied and thereby effecting
the momentum acceptance. The tunings of the various configurations are summarized, along with the corresponding
frequency shits, in Table I. The fractional shifts in ωa for each of the configurations are plotted in Figure 6. Note that
Figures 2, 3, ?? and 5 correspond to configuration #6.
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TABLE I: For all but configuration 7, the distribution of the Valetov[6, 7]. end to end simulation is our starting
point. The twiss parameters of that distribution are transformed to match the measurement β and α-functions[10].

The offset and angle of the distribution at the entrance to the backleg iron are adjusted so that it reproduces
measurement of hits on IBMS1 and IBMS2. The inflector field is nominally chosen based on the measured IBMS3
signal. The nominal kicker timing is the peak of the capture vs timing scan. In configuration 1, the raw Valetov

distribution is used in order to test the fidelity of our transformation of twiss parameters.

Configuration ∆ωa
ωa

[ppb] Description Starting Distribution code

1 18.4 ± 5.3 Raw distribution Valetov bmad

2 12.3 ± 1.7 tuned -
∆Binf
Binf

= −1% Valetov bmad

3 1.9 ± 0.63 tuned -
∆Binf
Binf

= +1% Valetov bmad

4 9.6 ± 1.6 tuned, Bkick = 224G Valetov bmad
5 6.3 ± 1 tuned, Bkick = 264G tkick = −30ns Valetov bmad
6 9.2 ± 1.2 tuned - run 3b Bkick = 264G Valetov bmad
7 10.0 ± 1.1 tuned - run 3b Bkick = 264G Stratakis bmad
8 0.07 ± 0.4 run2 Valetov gm2ringsim
9 0.02 ± 0.19 run3 A-G Valetov gm2ringsim
10 −0.36 ± 0.16 run3 I-L Valetov gm2ringsim
11 −0.06 ± 0.13 run3 M Valetov gm2ringsim
12 0.12 ± 0.11 run3 N-O Valetov gm2ringsim
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FIG. 6: ∆ωa/ωa for a dozen different configurations of simulation injection parameters. The systematic difference in
the results of nearly 10 ppb between “gm2ringsim” and “bmad” calculations is not entirely understood, but is likely
a result of subtle differences in tuning of the trajectory through the injection channel. Note that configuration 1 is

performed strictly for diagnostic purposes.

VI. CONCLUSION

In the decay of pions to muon and neutrino, the relative orientation of the muon’s spin and velocity vectors are
perfectly correlated. That correlation appears at the entrance to the g-2 ring as a correlation between spin angle
and transverse phase space coordinates. Because of the high dispersion in the storage ring, momentum acceptance
is correlated with those same phase space coordinates, angle x′ and offset x. The resulting correlation of spin angle
and momentum in the stored beam contributes an early to late systematic due to differential decay. The fractional
shift in ωa is estimated using simulations to generate and propagate particle distributions. In view of our imperfect
knowledge of injection parameters we estimate the effect to be

∆ωa
ωa
∼ 5± 6 ppb.
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