Differential Decay and Spin-Coordinate Correlation

$$\begin{split} \langle \Delta \omega_a \rangle &= \frac{d \langle \phi_a \rangle}{d\gamma} \frac{d\gamma}{dt} \\ &= \left(\frac{d \langle \phi_a \rangle}{dx_{inf}} \frac{d \langle x_{inf} \rangle}{d\delta} + \frac{d \langle \phi_a \rangle}{dx'_{inf}} \frac{d \langle x'_{inf} \rangle}{d\delta} \right) \frac{1}{\gamma} \frac{d \langle \gamma \rangle}{dt} \\ &\frac{d \langle \phi_a \rangle}{dx_{inf}} \, \& \frac{d \langle \phi_a \rangle}{dx'_{inf}} \quad \text{Characteristic of injected beam at inflector exit} \\ &\frac{d \langle x_{inf} \rangle}{d\delta} \& \frac{d \langle x'_{inf} \rangle}{d\delta} \quad \text{Determined by momentum acceptance of ring} \\ &\frac{d \langle \gamma \rangle}{dt} = \frac{\gamma^2 \sigma_e^2}{\gamma^2 (1 + \langle \delta \rangle)^2 \tau} \quad \text{Crnkovic et al. doc-db 3477} \end{split}$$

12 December 2022

Characteristic of injected beam at inflector exit. Correlations arise in pion decay channel

Propagate distributions generated by Diktys and Eremey to inflector exit. Create 2 dimensional arrays $N(\phi, x_{inf}), N(\phi, x'_{inf})$ Fit $\phi = a + bx_{inf}$ (for example) using

$$\chi^{2} = \Sigma_{i} \left(\Sigma_{j} N_{ij} \left(\phi_{j} - (a + bx_{i}) \right) \right)^{2} = \Sigma_{i} (\Sigma_{j} N_{ij}) \left(\langle \phi \rangle_{i} - (a + bx_{i}) \right)^{2}$$

Minimize with respect to a,b to get

$$\frac{d\langle\phi\rangle}{dx_{inf}} = b$$

Propagate distribution through the injection channel to the inflector exit. Correlations of $\phi_a = \cos^{-1}\left(\frac{\mathbf{s} \cdot \mathbf{p}}{|\mathbf{s}||\mathbf{p}|}\right)$ with x, x' and δ

Particle tracking to construct, $N(x_{inf}, \delta)$ and $N(x'_{inf}, \delta)$

Track particles with temporal distribution as per measured T0 through the injection channel and into the ring

• Peak kicker field is 264 G (Run3b-4)

- Use measured kicker and muon pulses
- Assemble 2 dimensional arrays of particles that survive at least 4 us, $N(x_{inf}, \delta)$ and $N(x'_{inf}, \delta)$

Track particles (Diktys distribution) through the injection channel and into the ring (created)

- Peak kicker field is 264 G (Run 3b-4), Measured kicker pulse shape.
- Compute offset and angle at inflector vs fractional momentum offset for particles that survive at least 4 us config_032

Dependence on kicker field, timing, inflector field, beam line distribution ?

$\frac{dx_{inf}}{d\delta}$ [m]	$rac{dx'_{inf}}{d\delta}$ [rad]	$\frac{d\phi}{dx_{inf}} [\frac{\mathrm{rad}}{\mathrm{m}}]$	$rac{d\phi}{dx'_{inf}}$	$\langle r_e angle$ [mm]	σ_r [mm]	$\frac{d\langle\gamma\rangle}{dt}\times 10^{-7}/\mu s$	B _{kick} [G]	Kick delay [ns]	$\frac{\Delta B}{B_{inf}}$ [%]	Beamline Distribution
0.58 ± 0.04	0.26 ± 0.03	0.86 ± 0.14	0.87 ± 0.26	5.6	8.9	5.702	224	180	0	Eremey
0.55 ± 0.04	0.22 ± 0.03	0.86 ± 0.14	0.87 ± 0.26	2.6	9.1	6.016	264	180	0	Eremey
0.64 ± 0.06	0.25 ± 0.03	0.86 ± 0.14	0.87 ± 0.26	1.8	9.2	6.017	264	210	0	Eremey
0.53 ± 0.06	0.26 ± 0.05	0.97 ± 0.13	1.26 ± 0.24	1.3	8.9	5.708	264	210	0	Diktys
0.47 ± 0.05	0.17 ± 0.02	0.77 ± 0.14	0.93 ± 0.20	2.6	9.3	6.228	264	210	+1	Eremey
0.73 ± 0.08	0.30 ± 0.06	0.97 ± 0.11	1.09 ± 0.30	1.4	8.5	5.209	264	210	-1	Eremey

Backup

Correlation between muon spin and momentum in muon rest frame

 Σ^{T}

μ

 Σ^{T}

 p_{μ}^{T}

12 December 2022

9

 $\Theta \approx 0^{\circ}$

 $\phi_a = \tan^{-1} \left(\Sigma_{\mu}^x / \Sigma_{\mu}^z \right)$

 $\Delta p / p$

$$N_{ij}$$
 — Is the number of muons stored with momentum $~\delta_i~$ and displacement x_j or $~x_j'$,

$$\chi^2 = \sum_i (\sum_j N_{ij} [x_j - (a + b\delta_i)])^2$$

Slope = b

Track particles (Eremey) with temporal distribution as per measured T0 through the injection channel and into the ring

- Peak kicker field is 264 G (Run 3b-4), Measured kicker pulse shape
- Compute offset and angle at inflector vs fractional momentum offset for particles that survive at least 4 us config_034

11

Shift kicker time 30ns earlier

configue 035 er 2022

config_26mber 2022

Increase inflector 1% (start time =210ns, B_{kick}=264G

config_D2c2mber 2022

