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Closed Orbit Distortion

Contribution from Electric Field

We have

∆ωE = − e

mc
aµ(−2

∆p

p
βγEρ)

→ ∆ωE
ωa

= Ce =
−2〈∆pp βγEρ〉

B

We can write ∆p
p = xeη, where xe is the momentum dependent displacement of the closed orbit from

the magic radius. The radial electric field is given by

Eρ = n

Å
βγB

R0

ã
xe

so that

〈Ce〉 = −2β2
γn(1− n)

〈x2
e〉

R2
0

where we have used η = R0/(1− n).

What can go wrong? We measure the revolution frequency.

∆T = 2π〈x(φ)〉/v

x(φ) = η(φ)
∆p

p

∆Tv = 2π〈η〉∆p
p

2π
∆ω

ω2
v = 2π〈η〉∆p

p

v∆ω

ω2
=

∆p

p
〈η(φ)〉

R
∆ω

ω
=

∆p

p
〈η(φ)〉

∆p

p
=

R

〈η〉
∆ω

ω

We see that to convert frequency offset into momentum offset, we need the dispersion averaged around
the ring. Now our usual approximation of the electric field is

Eρ = n

Å
βγB

R

ã
xe = kxe

and including the possibility of a closed orbit error

xe = xc(φ) + η(φ)
∆p

p
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Then we can write
B

βγ
Ce = −2

Å
∆p

p

ã
(〈xc(φ)k(φ)〉+

∆p

p
〈η(φ)k(φ)〉)

So we need
〈η〉 =

1

2π

∮
η(φ)dφ

〈ηk〉 =
1

2π

∮
η(φ)k(φ)dφ

〈xck〉 =
1

2π

∮
xc(φ)k(φ)dφ

Magnetic field is periodic.
B =

∑
r

Br cos(rθ)

r = 0 establishes closed orbit. r > 0 leads to closed orbit distortion. Evaluate closed orbit and dispersion

η(s) =

√
(β(s)

2 sinπν

∮
e

p

∑
r

Br cos(rθ(s′))
»
β(s′) cos(φ(s)− φ(s′)− πν)ds′

dφ = ds/β, φ = νθ

η(θ) =

√
β(θ)

2 sinπν

∫ θ

θ−2π

e

p

∑
Br cos(rθ′)ν

»
β3(θ′) cos(νθ − νθ′ − πν)dθ′

If n = 0 and e
pB0 = 1/R0 and β(θ) = β

η(θ) =
ν

2 sinπν

β2

R0

sin(νθ − νθ′ − πν)

−ν
|θθ−2π

η(θ) =
ν

2 sinπν

β2

R0

sin(−πν)− sin(πν)

−ν

η(θ) =
β2

R0
=

R0

1− n

where β = R0/
√

1− n. More generally the rth moment of the dispersion

ηr(θ) =

√
β(θ)

2 sinπν

∫ θ

θ−2π

br cos(rθ′)νβ3/2(θ′) (cos(νθ − νθ′ − πν) dθ′

ηr(θ) =

√
β(θ)

2 sinπν

∫ θ

θ−2π

brνβ
3/2(θ′)

1

2
(cos(rθ′ + νθ − νθ′ − πν) + cos(rθ′ − νθ + νθ′ + πν)) dθ′

ηr(θ) ≈ β2

2 sinπν
brν

1

2

Å
1

r − ν
sin(rθ′ + νθ − νθ′ − πν) +

1

r + ν
sin(rθ′ − νθ + νθ′ + πν)

ã
|θθ−2π

ηr(θ) ≈ β2

2 sinπν
brν

1

2

Å
1

r − ν
(sin(rθ − πν)− sin(rθ + πν)) +

1

r + ν
(sin(rθ + πν)− sin(rθ − πν))

ã
ηr(θ) ≈ β2

2 sinπν
brν

Å− cos(rθ) sin(πν)

r − ν
+

cos(rθ) sin(πν)

r + ν

ã
ηr(θ) ≈ 1

2
β2br cos(rθ)

Å
− ν

r − ν
+

ν

r + ν

ã
ηr(θ) ≈ β2br cos(rθ)

Å −ν2

r2 − ν2

ã
(1)
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where br = e
pBr with dimensions of inverse length and in the third line we assume β is constant. Equation

1 also gives the closed orbit distortion for the on energy particle for the rth multipole (r > 0) of the
magnetic field. For r = 0 1 becomes

η =
β2

R0
=

R0

1− n

where b0 = 1/R0 and β = R0/
√

1− n. For r = 1, looks pretty much like the calculation with the
measured field so most of field error is n = 1 and br ∼ 5.6× 10−6m−1 or about 40 ppm.

The closed orbit distortion for the on momentum particle is xr(θ) = η(θ).

The next step is to compute 〈ηk〉. We can write the azimuthal dependence of the electric field, just like
the magnetic. Due to the four fold symmetry

k(θ) =
∑

km cos(4mθ + φm)

where k1 = k0 so that the first 2 terms give

k(θ) = k0(1 + cos(4θ + φm))

Then

〈ηk〉r,m = 2β2br

Å −ν2

r2 − ν2

ã∫ ∑
m=0

km cos(4mθ + φm) cos(rθ)dθ

〈ηk〉r,m = β2br

Å −ν2

r2 − ν2

ã∑
m

kmδ4m,r

We find that only r = 0, 4, 8, . . . contribute to the average. We can try to compare the contribution from
the m = 1, r = 4 to the m = r = 0 part.

〈ηk〉4,1
〈ηk〉0,0

=
−ν2

16− ν2

b4
b0

k1

k0

Keeping the leading terms

k(θ) = k0 + k1 cos(4θ + φm)

it appears that k0 = k1 so that k varies between 0 and 2k0.

〈ηk〉4,1
〈ηk〉0,0

=
ν2

16− ν2

b4
b0

Fitting to the measured azimuthal field on the closed orbit from the measured field we find that b4/b0 ∼ 4
ppm and therefore

〈ηk〉4,1
〈ηk〉0,0

∼ 233 ppb

That is, the correction due to the distortion of the dispersion function is less than 1 part in a million.
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Closed Orbit Distortion

As xr(θ) = η(θ)r we know that

〈xrk〉 = 0, r 6= 4

〈x4k1〉 = β2b4

Å −ν2

r2 − ν2

ã
k1 ∼ 10−5m−1k1

To what do we compare this contribution? Let’s try

〈xck〉
(∆p/p)〈ηk〉

=
10−5

(∆p/p)η0
∼ 10−5

8
=

1.3× 10−6

∆p/p

If ∆p/p < 1× 10−6 the closed orbit distortion dominates. The correction for such a momentum offset is

Ce(∆p/p) = −2β2n(1− n)
〈x2
e〉

R2
0

= −2β2n(1− n)
〈(η∆p/p)2〉

R2
0

= −2β2n
〈(∆p/p)2〉

1− n
∼ −2

n

1− n
(∆p/p)2

∼ −2
0.11

1− 0.11
(10−6)2

∼ −.25× 10−12

or −0.25× 10−3 ppb.

What about that earlier approximation that β is constant around the ring. A better approximation is

β(θ) = β0 + β4 cos(4θ + φβ)

The term

β3/2(θ) ∼ β3/2
0 (1 +

3

2

β4

β0
cos(4θ + φβ))

Compute the contribution to the dispersion due to the variations in β.

ηr(θ) = β2
0

1 + 1
2
β4

β0
cos(4θ + φβ)

2 sinπν

∫ θ

θ−2π

br
3β4

2β0
cos(rθ′)ν cos(4θ′ + φβ) (cos(νθ − νθ′ − πν) dθ′

(2)

It looks like we will end up with terms proportional to cos(r ± 4) and cos(r ± 4 ± 4), neither of which
will contribute to the integral of dispersion and electric field.
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