#set term pdf fontscale 0.75 size 6in,4in enhanced #outfile='sigma_perp_vs_theta.pdf' #set output outfile set timestamp font 'Verdana,6' #offset graph 1.13,0.7 rotate font 'Verdana,6' set label 4 'sigma_perp_vs_theta.gnu' at graph 1.02,0.02 rotate left font 'Verdana,6' noenhance !pwd > directory !sed -n -e 's/^/name="/' -e 's/$/"/p' directory > name load 'name' print 'directory='.name set label 1 at graph 0.0, 1.02 name font 'Verdana,6' noenhance mpi= 139.57 mmu= 105.658 b=mmu/mpi pmu_r = (mpi**2-mmu**2)/2./mpi Emu_r = sqrt(pmu_r**2+mmu**2) gamma_r = Emu_r/mmu beta_r = pmu_r/Emu_r set samples 10000 array E[3] E[1] = 310.; E[2]=3100.; E[3]=31000. do for [i=1:3]{ gamma = E[i]/mpi beta = sqrt(1. - 1/gamma**2) ppi = gamma*beta*mpi coshxp = sqrt(gamma+1) sinhxp = sqrt(gamma-1) coshx = sqrt(gamma_r+1) sinhx = sqrt(gamma_r-1) spin1(x) = (coshxp*coshx + sinhxp*sinhx)*cos(x/2) spin2(x) = (coshxp*coshx - sinhxp*sinhx)*sin(x/2) spin3(x) = (-sinhxp*coshx - coshxp*sinhx)*cos(x/2) spin4(x) = (sinhxp*coshx - coshxp*sinhx)*sin(x/2) tan_thetap_s(x) = spin2(x)/spin1(x) tan_thetap_o(x) = -spin4(x)/spin3(x) tan_thetap_direct(x) = sin(x)/(gamma*(beta+beta_r*cos(x))) thetap_s(x) = atan(tan_thetap_s(x))*2 thetap_o(x) = atan(tan_thetap_o(x))*2 dtheta(x) = thetap_s(x) - thetap_o(x) sin_spin_theta(x) = sin(dtheta(x)) snux(x)=sin(x); snuz(x)=cos(x) gammap(x) = gamma_r*gamma*(1-beta*beta_r*cos(x)) beta_rx(x) = beta_r*sin(x) beta_rz(x) = beta_r*cos(x) gammap(x) = gamma_r*gamma*(1+beta*beta_rz(x)) g2_g1 = gamma_r**2/(1+gamma_r) betaxp(x)=gamma_r*beta_r*sin(x)/gammap(x) betazp(x)=gamma_r*gamma*(beta+beta_r*cos(x))/gammap(x) betap(x)=sqrt(betaxp(x)**2+betazp(x)**2) nbetaxp(x) = betaxp(x)/betap(x) nbetazp(x) = betazp(x)/betap(x) sx(x) = cos(x)*nbetaxp(x)*nbetazp(x)*(gammap(x)-1) + 0.5*sin(x)*((gammap(x)+1)+(nbetaxp(x)**2-nbetazp(x)**2)*(gammap(x)-1)) sz(x) = 0.5*cos(x)*((gammap(x)+1)+(nbetazp(x)**2-nbetaxp(x)**2)*(gammap(x)-1))+sin(x)*nbetaxp(x)*nbetazp(x)*(gammap(x)-1) slength(x)=sqrt(sx(x)**2+sz(x)**2) sin_alpha(x) =(sx(x)*betazp(x)-sz(x)*betaxp(x))/slength(x)/betap(x) svecx(x) = (1+(gammap(x)-1)*nbetaxp(x)**2)*sin(x) + (gammap(x)-1)*nbetaxp(x)*nbetazp(x)*cos(x) svecz(x)= (gammap(x)-1)*nbetaxp(x)*nbetazp(x)*sin(x) + (1+(gammap(x)-1)*nbetazp(x)**2)*cos(x) tan_alpha_w(x) = sin(x)/gamma_r/(cos(x)+beta_r/beta) sin_alpha_w(x) = tan_alpha(x)/(1+tan_alpha(x)**2)**.5 length_svec(x) = sqrt(svecx(x)**2+svecz(x)**2) sin_alpha_vec(x)= (svecx(x)*betazp(x)-svecz(x)*betaxp(x))/length_svec(x)/betap(x) #pmux(x)=pmu_r*sin(x); pmuz(x)=gamma*(beta*Emu_r+pmu_r*cos(x)) #sperp(x) = (snux(x)*pmuz(x)-snuz(x)*pmux(x))/(pmux(x)**2+pmuz(x)**2)**.5 xx(x) = gammap(x)*betazp(x)*mmu/(beta*gamma*mpi) scpperp(x) = 2*b/xx(x)/(1-b**2)*sqrt((1-xx(x))*(xx(x)-b**2))*x/abs(x) print gamma_r, beta_r, beta,gamma #sdotp(x)=gamma_r**2*(-beta_r*sin(x)*sin(x)+gamma**2*(-beta_r*beta**2+(beta_r**2*beta+beta)*cos(x) - beta_r*cos(x)**2)) #sp(x)=gamma_r**2*(sin(x)**2+gamma**2*(-beta_r*beta+cos(x))**2)**.5 * (beta_r**2*sin(x)**2+gamma**2*(beta-beta_r*cos(x))**2)**.5 #costheta(x)=sdotp(x)/sp(x) #sdotp(x)=gamma_r**2*(-beta_r*sin(x)*sin(x)+gamma*(beta*cos(x) - beta_r*cos(x)**2)) #sp(x)=gamma_r**2*(sin(x)**2+cos(x)**2)**.5 * (beta_r**2*sin(x)**2+gamma**2*(beta-beta_r*cos(x))**2)**.5 set key bottom r L set label 7 at graph 0.05,0.95 'E_{/Symbol p}='.sprintf("%3.1f", E[i]).' MeV' set label 5 at graph 0.05,0.87 '{/Symbol g}='.sprintf("%3.1f",gamma) set label 6 at graph 0.05,0.8 '{/Symbol b}='.sprintf("%4.3f",beta) set xrange [-pi:pi] set yrange [-1:1.2] set grid set xlabel '{/Symbol q} [rad]' set xtics ("-pi" -pi, "-pi/2" -pi/2, "0" 0, "pi/2" pi/2, "pi" pi) set ylabel '{/Symbol S}_T' plot sin_alpha(x) t '{/Symbol S}_T (dlr)', scpperp(x) t '{/Symbol S}_T (cp)', xx(x) t 'x=p^{/Symbol m}_{||}/p_{/Symbol p}',sin_alpha_w(x) w lp t 'werbrouck', sin(thetap_s(x)-x) lt -1 t 'spinor - orbit' pause -1 set xrange [-pi/8:pi/8] set xtics -pi/8,pi/40 set autoscale y plot sin_alpha(x) t '{/Symbol S}_T (dlr)',sin_alpha_vec(x) t '4-vector' pause -1 #set xrange [-pi:0] #set autoscale y #plot sdotp(x) #plot sp(x) #plot costheta(x) #plot (1-costheta(x)**2)**.5*x/abs(x) reset set xrange [-pi:pi] plot sx(x) t 'spinor', svecx(x) t 'vector' pause -1 } #print outfile