
Dark Current Simulations: User’s Guide

Christie Chiu∗

Massachusetts Institute of Technology
Cambridge MA, 02135

August 28, 2011

This document contains user’s guides to the code dark current tracker.f90,
particle generator cavity7.f90, and wall generator.f90. It also contains a
guide to the Mathematica notebook wallCreator datapts.nb. Together, this soft-
ware allows a user to simulate dark current in an accelerator lattice.

1 dark current tracker.f90

This dark current simulation code is the main
driver program. It tracks multiple particles
backwards or forwards through elements until
they either exit the accelerator lattice or hit a
wall.

1.1 Input

There are no command line arguments, but the
program uses the following variables, defined
in the namelist file dark current tracker.in:

• lat name: lattice file name, set to
lat.bmad by default.

• particle file name: particle file name
of particles’ initial positions and charges,
set to ReferenceParticles.dat by de-
fault.

• tracking: Indicates whether particles
tracks will be saved (True) or not (False).
Default is False.

• verbose: Indicates whether extra infor-
mation will be printed to screen as pro-
gram runs (True) or not (False), False by
default.

• max charge ratio: Particles will only
be tracked if they have charge within

1/max charge ratio of the maximum
charge present. This is set to 106 by de-
fault.

1.2 Output

The output is a file with the same filename as
particle file name, but with a .out exten-
sion. It contains the particle tracks for each
particle if tracking is True, and only the final
destinations otherwise. Each data point has
time, phase-space coordinates for x, y, and s,
angle of impact, and effective charge. The an-
gle of impact is the angle to the normal vector
to the surface at the point of impact, and is
measured in radians. All coordinates are in
the global t-based reference frame.

1.3 Methodology

The dark current simulation code iterates
through each particle and tracks it from its
starting location to final destination. For each
particle, we:

1. Determine in which element it begins

2. Track the particle through that ele-
ment with our custom time-based tracker
(in dark current tracker.f90). The

1



tracker queries for the EM field at the par-
ticle’s current location, then uses Runge-
Kutta to calculate where it travels in a
time step. It repeats this process until the
particle either hits a wall or exits the ele-
ment at either end. The tracker also uses a
refined time step as a rootfinding method
to minimize errors in the final time step.

• If the particle exits into another ele-
ment, it tracks the particle through
the subsequent element.

• If the particle exits the lattice or hits
a wall, it moves on to the next par-
ticle.

dark current tracker.f90 uses
the track1 custom subroutine in
track1 custom.f90, which does the fol-
lowing:

1. Checks to see if the current element has
length 0. If it does, it continues on to the
next element.

2. Converts the particle’s global t-based co-
ordinates to local element t-based coordi-
nates. To do this, it must convert:

a) Global t-based → Global s-based

b) Global s-based → Element s-based

c) Element s-based → Element t-based

We cannot convert directly because we use
conversion subroutines in Bmad, which are
all s-based.

3. Checks that particle is inside of accelera-
tor walls. If not, we say it hit a wall and
exit the subroutine.

4. Query the field and use Runge-Kutta to
find the particle’s position after every time
step. This happens until the particle hits
a wall or exits.

5. Converts the particle back to global t-
based coordinates.

2 particle generator cavity7.f90

The particle generator code creates a set of
particles that we can then simulate in our

driver program. Currently, it only creates par-
ticles on cavity walls. The particle locations
are evenly spaced on these cavity walls, but
given a random angle φ about the center s-
axis. At each location, multiple particles are
created, each with a different phase. These
phases are evenly spaced about the RF cavity
period. Each particle is also given an effective
charge that is weighted according to the likeli-
hood of field emission at that location.

2.1 Input

There are no command line arguments,
but the program uses the following
variables, defined in the namelist file
particle generator cavity7.in:

• lat name: lattice file name, set to
la.bmad by default.

• numParticles: number of particle loca-
tions per cavity, set to 100 by default.

• numPhases: number of phases per particle
location, set to 1 by default.

• lattice part: we will only create parti-
cles for 1/lattice part of the cavities in
the entire lattice. This is set to 30 by de-
fault.

• lattice shift: we will start creating
particles for the first cavity after element
number lattice shift, set to 0 by de-
fault.

• buffer: distance between particle and
wall, because if it is too close we may
have precision issues. The default buffer
is 10−8.

• beta fn: Fowler-Nordheim field enhance-
ment factor, set to 300 by default.

• A fn: Fowler-Nordheim effective emitter
area, set to 3 · 10−17 by default.

• angles on: If True, we will give each loca-
tion a random angle φ as described above.
If False, φ equals 0 for all locations. This
is set to True by default.

2



• max charge ratio: Particles will only
be created if they have charge within
1/max charge ratio of the maximum
charge present. Its default value is 106.

2.2 Output

The output is a file with a filename struc-
ture l# n# p#.dat. The first # equals
lattice part, the second is numParticles,
and the third is numPhases. The first line
in this file contains the total number of par-
ticles in the file. After that, each line con-
tains the global phase space coordinates in the
form (x, βx · γx, y, βy · γy, z, βz · γz), followed
by the phase and effective charge. The effec-
tive charge is the current calculated from the
Fowler-Nordheim cold emission model, multi-
plied by the phase resolution, then multiplied
by the radius to the center axis. We need
the last correction to account for the fact that
bands of wall with larger radii will have larger
surface area, making it more likely for field
emission if all other factors are constant.

2.3 Methodology

During initialization, we count the maximum
number of particles we could have and allo-
cate an array to hold these particles’ coor-
dinates. To create particles, we start at el-
ement lattice shift and look for a cavity
until we’ve looked through 1/lattice part of
the lattice elements. When we arrive at a cav-
ity, we do the following:

1. Set momenta equal to 0.

2. Find length of cavity boundary by adding
up all linear segments between the wall
cross sections used to define the element
geometry. Then we know the distance be-
tween each particle location for angle φ
equal to 0 because they are evenly spaced
along the wall.

3. Start with the interparticle distance di-
vided by two, so that the last particle is
also half the interparticle distance from
the end boundary of the cavity. We then
have the following logic, dependent upon

a running distance and current cross sec-
tion. The initial running distance is half of
the interparticle distance, and the initial
cross section is the first, at the entrance
boundary of the cavity.

a) If the running distance is greater
than the linear segment length be-
tween the current cross section and
the one following, we subtract the
linear segment length from the dis-
tance and move on to the next cross
section.

b) If the running distance is the same
length as the linear segment length
between the current cross section and
the one following, we create a parti-
cle location at the following cross sec-
tion, set the running distance to be
the interparticle distance, and move
on to the next cross section.

c) If the running distance is less than
the linear segment length between
the current cross section and the one
following, we create a particle loca-
tion at the running distance along
the linear segment, then add the in-
terparticle distance to the running
distance while keeping the current
cross section constant. This lets us
find the next particle location while
maintaining our use of only the cross
section coordinates.

d) We repeat these steps until we have
reached the last cross section.

4. At each particle location, we generate
a random angle φ (if desired), and cre-
ate numPhases particles there with phases
evenly spaced about the cavity period.

• However, we only save particles
if they have charge greater than
1/max charge ratio of the maxi-
mum charge of all particles created.
To do this, we keep a record of the
greatest effective charge we have en-
countered so far. We filter for par-
ticles twice: the first time, parti-
cles are saved into the array if their
charge is sufficient compared to the

3



running maximum. The second, par-
ticles are saved to file if their charge
is sufficient compared to the absolute
maximum.

• To calculate effective charge, we use
the Fowler-Nordheim equation. Be-
fore that, however, we check to see
if the electric field at the cavity sur-
face is pointing into or out of the cav-
ity interior. If the field pushes elec-
trons into the wall, then we set the
particle charge equal to 0 because we
know there will not be field emission
at that phase.

• The charge from Fowler-Nordheim is
then further weighted according to
radius as previously described.

3 wall generator.f90

This Fortran code parses a lattice file and out-
puts a particle track file where the points are
not actually particle tracks, but instead points
that trace out the intersection between the up-
per xs-plane and accelerator. This file can
then be read in by Mathematica to draw a
wall over any particle track or endpoint plot for
qualitative analysis. Notice that we only gen-
erate points at the lattice cross sections, so this
method relies upon the fact that the walls are
created with only linear interpolation in the
simulation. If cubic interpolation is used, this
wall generator may not draw accurate walls.

3.1 Input

The wall generator program takes the lattice
file name as a command line argument.

3.2 Output

The output is a particle track file as mentioned,
with the name wall.dat.

3.3 Methodology

Because we only take points along a lateral
cross section, we can immediately set all of
time, y, momenta, hit angle, and charge equal
to 0. That is, we only need to worry about the

x- and s-coordinates. Then, for each element,
we run the following:

1. If a wall structure exists for the element
under consideration, we iterate along the
element’s cross sections and get its x-
radius and s-coordinate. Both of these co-
ordinates are always defined in the lattice
in order to create a wall. We then write
the coordinates to file in the same format
as the dark current tracker.f90 out-
put file.

2. If a wall structure does not exist, then we
take its aperture and plot two points. The
first is at the very beginning of the ele-
ment and has x-coordinate equal to the
aperture radius. The second is idential,
except at the end of the element.

4 wallCreator datapts.nb

When we generate our EM field data file,
we are also given a set of data points
that describe the wall boundary. To cre-
ate a Bmad 3D wall structure from these
points, we can use the Mathematica notebook
wallCreator datapts.nb.

4.1 Input

Mathematica reads in the provided set of data
points, which are formatted as two columns:
s-coordinate and radius. The current filename
for this data is cavity7cell2d.wall

4.2 Output

After running wallCreator datapts.nb, we
have a Bmad file that defines the wall for an el-
ement called cavity7. This file must be linked
to from the main lattice file, and can be read
directly by the Bmad parser. The current out-
put file has name wall.cavity7cell2d.bmad.

In our lattice, we would also like our RF cav-
ity to be centered. This may not be true from
the EM field data points, so we calculate how
far we need to shift our cavity to the left to
make it as symmetric as possible. However, if
we shift the cavity wall data, it will no longer
line up with the EM field data. Therefore, we

4



need to instead shift the flanking pipe lengths.
This Mathematica notebook calculates what
that shift difference is and sets xDist equal
to that value. The lattice files have a param-
eter that needs to be manually set to xDist,
and all the pipes will automatically be changed
accordingly.

4.3 Methodology

First, we describe our algorithm for creating a
wall.

1. The current wall data has overlapping
points, as well as points that are not
necessarily in order of ascending s-
coordinate. Bmad, however, expects no
multiple cross sections and cross sections
must be in order. So, we first sort the data
points and elimate any duplicates.

• We eliminate duplicates by iterating
through the ordered list and keeping
only points that do not have a dupli-
cate before them.

2. If we use each data point to create a cross
section for our cavity lattice element, then
the Bmad parser will take too long process-
ing the lattice file. Therefore, we must
decimate the data set first. To do this, we
set a value decimFactor by hand and run
the commands that take one point out of
every decimFactor points and plot the re-
sulting curve. Once we are satisfied with
this curve, we write the wall structure to
file wall.cavity7cell2d.bmad.

Then, we calculate xDist through the steps
below.

1. We take the data points after step 1 above
and flip them across the vertical center of
the cavity to get another data set.

2. By comparing the two curves, we can tell
if they are symmetric from their level of
overlap. If there is complete overlap, then
the difference in their interpolating func-
tions will be 0. Otherwise, it will be
nonzero. Because the wall data is close
to symmetric, we can conclude that the

difference is correlated with the level of
symmetry.

3. We cannot take the average of the differ-
ence of points along the curves because
then largely positive and negative differ-
ences will still average to a small value.
Additionally, the oscillatory characteristic
of the cavity walls suggests that the aver-
age will be close to 0 regardless of shift
size. To get a good value of xDist, we
instead minimize the standard deviation.

5


	1 dark_current_tracker.f90
	1.1 Input
	1.2 Output
	1.3 Methodology

	2 particle_generator_cavity7.f90
	2.1 Input
	2.2 Output
	2.3 Methodology

	3 wall_generator.f90
	3.1 Input
	3.2 Output
	3.3 Methodology

	4 wallCreator_datapts.nb
	4.1 Input
	4.2 Output
	4.3 Methodology


