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Abstract

Bmad uses a version of the Edwards-Teng represen-
tation for transverse coupling, while MAD-X (through
PTC_TWISS) uses a version of the Ripken representation.
I give formulas for converting between the two representa-
tions.

THE NORMALIZING MATRIX

When discussing Courant-Snyder lattice functions or their
generalization to the coupled case, we are really referring
to is a parameterization of the normalizing matrix for the
linear map of the transverse variables. Thus, the linear map
from point 1 to point 2 is decomposed as

Moy = AsRy AT (D

where all matrices are symplectic, and
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From this definition, ¢.»; are arbitrary since both A. can be
multiplied on the right hand side by a matrix of the same
form as R;; and the normalizing relation will still have the
same form. For a periodic line, A; = A,, therefore ¢.o; are
no longer arbitrary, but the freedom in multiplying A; on
the right by a matrix of the same form as R»; still exists.
A symplectic 4 x 4 matrix has 10 degrees of freedom, and
the freedom of choice of the two rotation angles means that
there are 8 degrees of freedom in A..

The Ripken representation [1, 2] describes those degrees
of freedom with §;; and a;;, i, j € {1,2}, defined as
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For convenience we also define
2
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Note that the indices of A are numbered from 1 to 4. For

the uncoupled case, 11 = Bx, B22 = By, P12 = P21 = 0,
i) = @y, @22 = @y, and a2 = az1 = 0.
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The Edwards-Teng representation, as implemented in
Bmad [3], describes A as
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where
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The 8 parameters are the 4 C;;, the 2 8; and the 2 a;.
CONVERSION BETWEEN
REPRESENTATIONS

Converting from the Edwards-Teng representation to the
Ripken representation is straightforward. Simply multiply
out the matrices in Eq. (6) and perform the computation in
Eq. (4). The results are
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az1 = (c11¢22 + €12621) g + €21¢22Pa + Cr1€C12Ya (13)
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Herey; = (1 + al.z)/,B,-.
The auxiliary parameters u, v, and v, from the Mais-
Ripken formulation in [2] can also be computed:
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,812 sinvy = -8, 20, (20)

Inverting the transformation is more complex. First, note
that

2n
(22)
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One can thus find y and therefore 8., a4, Bp, and ;.
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