!+ ! Function probability_funct (x) result (p_func) ! ! Routine compute the normal probability function probability_funct. ! ! Defining relation: ! probability_funct(x) = integral_{0, x} dt exp(-t^2/2) / sqrt(2*pi) ! ! Properties: ! probability_funct(0) = 0 ! probability_funct(\infty) = 0.5 ! probability_funct(-x) = -probability_funct(x) ! ! In terms of the error function: ! probability_funct(x) = erf(x/sqrt(2)) / 2 ! ! Input: ! x -- real(rp): Function argument. ! ! Output: ! p_func -- real(rp): Function value. !- function probability_funct(x) result (p_func) use precision_def implicit none real(rp) p_func, x p_func = erf(x/sqrt(2.0)) / 2 end function