parameter[lattice] = "PRSTAB 7, 2004 Toy Lattice" betaa=1e4 betab=1e4 alphaa=0 alphab=0 beginning[beta_a] = betaa beginning[alpha_a]= alphaa beginning[beta_b] = betab beginning[alpha_b] = alphab beginning[e_tot] = 5e9 parameter[geometry] = open rfw: lcavity, l = 0, gradient = 0.0, lr_wake_file="prstab2004.dat", lr_freq_spread=0.0E-3, rf_frequency = 1.3e9 m1: match, beta_a1=betaa, alpha_a1=alphaa, beta_b1=betab, alpha_b1=alphab, dphi_a=1, dphi_b=1, l=1.269, match_end=.true. p0c=5e9 !p0c=1 m12=-1.0e-6*p0c m21=-m12/(betaa^2) m11=sqrt(1-m12*m21) m22=m11 xi=500 ! Expand xout = x'in (beta1*beta2)^1/2 * sin(Psi+xi*delta) ! Multiply by 1/(1+delta) simeq (1-delta) to account for ! delta dependence of x'in. ! Average over symmetric delta distribution to keep only ! even powers of delta. ! xout propto (1+(1-0.5*xi^2)*delta^2)*sin(Psi) - xi*delta^2*cos(Psi) ! M12 = (beta1*beta2)^1/2 * sin(psi)=-5e3, so sin(psi)=-0.5 for beta1=beta2=1e4 m. ! So cos(psi) = sqrt(1-sin^2) = 0.87 sinpsi=m12/betaa cospsi=sqrt(1-sinpsi^2) m1266=betaa*((1-0.5*(xi^2))*sinpsi-xi*cospsi) !m1266=0 !t1: Taylor, {1: m12, 0 1 0 0 0 0}, l=1.269 ! Simple phase space rotation !t1: Taylor, {1: m12, 0 1 0 0 0 0}, & ! {1: m11, 1 0 0 0 0 0}, & ! {2: m21, 1 0 0 0 0 0}, & ! {2: m22, 0 1 0 0 0 0}, l=1.269 ! Add chromatic terms t1: Taylor, {1: m12, 0 1 0 0 0 0}, & ! {1: m11, 1 0 0 0 0 0}, & ! {2: m21, 1 0 0 0 0 0}, & ! {2: m22, 0 1 0 0 0 0}, & ! {1: 1., 1 0 0 0 0 1}, & ! {2: 1., 0 1 0 0 0 1}, & ! linear dependence on delta ! {1: .0001, 0 1 0 0 0 1}, l=1.269 ! Quadratic dependence on delta 1/2 * delta^2 ! {1: -xi/2, 0 1 0 0 0 2}, l=1.269 ! With cosine term: -xi*delta^2*cos(psi), cos(psi)about unity ! {1: -xi, 0 1 0 0 0 2}, l=1.269 {1: m1266, 0 1 0 0 0 2}, l=1.269 simple: line[multipass] = (rfw, t1) dual: line = (simple,simple) use, dual