!Copyright (c) 2009-2016 Tom Schoonjans !All rights reserved. !Redistribution and use in source and binary forms, with or without !modification, are permitted provided that the following conditions are met: ! * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. ! * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. ! * The names of the contributors may not be used to endorse or promote products derived from this software without specific prior written permission. !THIS SOFTWARE IS PROVIDED BY Tom Schoonjans ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Tom Schoonjans BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. PROGRAM xrltest USE xraylib IMPLICIT NONE TYPE (compoundData), POINTER :: cd CHARACTER (KIND=C_CHAR,LEN=10) :: compound1 = 'Ca(HCO3)2' CHARACTER (KIND=C_CHAR,LEN=5) :: compound2 = 'SiO2' INTEGER :: i TYPE (Crystal_Struct), POINTER :: cryst REAL (C_DOUBLE) :: bragg, q, energy, debye_temp_factor, f0, fp, fpp,& rel_angle REAL (C_DOUBLE) :: dw COMPLEX (C_DOUBLE) :: F_H, F_0, F_Hbar REAL (C_DOUBLE), PARAMETER :: PI = 4.D0*DATAN(1.D0) TYPE (compoundDataNIST), POINTER :: cdn TYPE (radioNuclideData), POINTER :: rnd CHARACTER (KIND=C_CHAR, LEN=NIST_LIST_STRING_LENGTH), POINTER, & DIMENSION(:) :: nistCompounds CHARACTER (KIND=C_CHAR, LEN=RADIO_NUCLIDE_STRING_LENGTH), POINTER, & DIMENSION(:) :: radioNuclides CHARACTER (KIND=C_CHAR, LEN=CRYSTAL_STRING_LENGTH), POINTER, & DIMENSION(:) :: crystals CALL XRayInit() WRITE (6,'(A)') 'Example of fortran program using xraylib' WRITE (6,'(A,F12.6,A)') 'Density of pure Al: ',ElementDensity(13),' g/cm3' WRITE (6,'(A,F12.6)') 'Ca K-alpha Fluorescence Line Energy: ',LineEnergy(20,KA_LINE) WRITE (6,'(A,F12.6)') 'Fe partial photoionization cs of L3 at 6.0 keV: ',CS_Photo_Partial(26,L3_SHELL,6.0_C_DOUBLE) WRITE (6,'(A,F12.6)') 'Zr L1 edge energy: ',EdgeEnergy(40,L1_SHELL) WRITE (6,'(A,F12.6)') 'Pb Lalpha XRF production cs at 20.0 keV (jump approx): ',CS_FluorLine(82,LA_LINE,20.0_C_DOUBLE) WRITE (6,'(A,F12.6)') 'Pb Lalpha XRF production cs at 20.0 keV (Kissel): ',CS_FluorLine_Kissel(82,LA_LINE,20.0_C_DOUBLE) WRITE (6,'(A,F12.6)') 'Bi M1N2 radiative rate: ',RadRate(83,M1N2_LINE) WRITE (6,'(A,F12.6)') 'U M3O3 Fluorescence Line Energy: ',LineEnergy(92,M3O3_LINE) !CompoundParser tests cd => CompoundParser(compound1) IF (.NOT. ASSOCIATED(cd)) THEN CALL EXIT(1) ENDIF WRITE (6,'(A,F12.6,A,I4,A,F12.6,A)') 'Ca(HCO3)2 contains ',cd%nAtomsAll,' atoms, ',& cd%nElements,' elements and has a molar mass of ', cd%molarMass, ' g/mol' DO i=1,cd%nElements WRITE (6,'(A,I2,A,F12.6,A,F12.6,A)') 'Element ',cd%Elements(i),' : ',& cd%massFractions(i)*100.0_C_DOUBLE,' % and ',& cd%nAtoms(i) ENDDO !Free the memory allocated for the arrays DEALLOCATE(cd) cd => CompoundParser(compound2) IF (.NOT. ASSOCIATED(cd)) THEN CALL EXIT(1) ENDIF WRITE (6,'(A,F12.6,A,I4,A,F12.6,A)') 'SiO2 contains ',cd%nAtomsAll,' atoms, ',& cd%nElements,' elements and has a molar mass of ', cd%molarMass, ' g/mol' DO i=1,cd%nElements WRITE (6,'(A,I2,A,F12.6,A,F12.6,A)') 'Element ',cd%Elements(i),' : ',& cd%massFractions(i)*100.0_C_DOUBLE,' % and ',& cd%nAtoms(i) ENDDO !Free the memory allocated for the arrays DEALLOCATE(cd) WRITE (6,'(A,F12.6)') 'Ca(HCO3)2 Rayleigh cs at 10.0 keV: ',CS_Rayl_CP('Ca(HCO3)2',10.0_C_DOUBLE) WRITE (6,'(A,ES14.6,A,ES14.6,A)') 'CS2 Refractive Index at 10.0 keV : ', & Refractive_Index_Re('CS2',10.0_C_DOUBLE,1.261_C_DOUBLE),' - ',& Refractive_Index_Im('CS2',10.0_C_DOUBLE,1.261_C_DOUBLE),' i' WRITE (6,'(A,ES14.6,A,ES14.6,A)') 'C16H14O3 Refractive Index at 1 keV : ', & Refractive_Index_Re('C16H14O3',1.0_C_DOUBLE,1.2_C_DOUBLE),' - ',& Refractive_Index_Im('C16H14O3',1.0_C_DOUBLE,1.2_C_DOUBLE),' i' WRITE (6,'(A,ES14.6,A,ES14.6,A)') 'SiO2 Refractive Index at 5.0 keV : ', & Refractive_Index_Re('SiO2',5.0_C_DOUBLE,2.65_C_DOUBLE),' - ',& Refractive_Index_Im('SiO2',5.0_C_DOUBLE,2.65_C_DOUBLE),' i' WRITE (6,'(A,F12.6)') 'Compton profile for Fe at pz = 1.1 : ' ,& ComptonProfile(26,1.1_C_DOUBLE) WRITE (6,'(A,F12.6)') 'M5 Compton profile for Fe at pz = 1.1 : ' ,& ComptonProfile_Partial(26,M5_SHELL,1.1_C_DOUBLE) WRITE (6,'(A,F12.6)') 'K atomic level width for Fe: ',& AtomicLevelWidth(26,K_SHELL) WRITE (6,'(A,F12.6)') 'Bi L2-M5M5 Auger non-radiative rate: ',& AugerRate(86,L2_M5M5_AUGER) WRITE (6,'(A,F12.6)') 'Bi L3 Auger yield: ',& AugerYield(86, L3_SHELL) WRITE (6,'(A,F12.6)') 'M1->M5 Coster-Kronig transition probability for Au : ',CosKronTransProb(79,FM15_TRANS) WRITE (6,'(A,F12.6)') 'L1->L3 Coster-Kronig transition probability for Fe : ',CosKronTransProb(26,FL13_TRANS) WRITE (6,'(A,F12.6)') 'Au Ma1 XRF production cs at 10.0 keV (Kissel): ',CS_FluorLine_Kissel(79,MA1_LINE,10.0_C_DOUBLE) WRITE (6,'(A,F12.6)') 'Au Mb XRF production cs at 10.0 keV (Kissel): ',CS_FluorLine_Kissel(79,MB_LINE,10.0_C_DOUBLE) WRITE (6,'(A,F12.6)') 'Au Mg XRF production cs at 10.0 keV (Kissel): ',CS_FluorLine_Kissel(79,MG_LINE,10.0_C_DOUBLE) WRITE (6,'(A,F12.6)') 'Pb Malpha XRF production cs at 20.0 keV with cascade effect: ',& CS_FluorLine_Kissel(82,MA1_LINE,20.0_C_DOUBLE) WRITE (6,'(A,F12.6)') 'Pb Malpha XRF production cs at 20.0 keV with radiative cascade effect: ',& CS_FluorLine_Kissel_Radiative_Cascade(82,MA1_LINE,20.0_C_DOUBLE) WRITE (6,'(A,F12.6)') 'Pb Malpha XRF production cs at 20.0 keV with non-radiative cascade effect: ',& CS_FluorLine_Kissel_Nonradiative_Cascade(82,MA1_LINE,20.0_C_DOUBLE) WRITE (6,'(A,F12.6)') 'Pb Malpha XRF production cs at 20.0 keV without cascade effect: ',& CS_FluorLine_Kissel_no_Cascade(82,MA1_LINE,20.0_C_DOUBLE) WRITE (6,'(A,F12.6)') 'Al mass energy-absorption cs at 20.0 keV: ', CS_Energy(13, 20.0_C_DOUBLE) WRITE (6,'(A,F12.6)') 'Pb mass energy-absorption cs at 40.0 keV: ', CS_Energy(82, 40.0_C_DOUBLE) WRITE (6,'(A,F12.6)') 'CdTe mass energy-absorption cs at 40.0 keV: ',& CS_Energy_CP('CdTe', 40.0_C_DOUBLE) WRITE (6, '(A,F12.6)') 'Sr anomalous scattering factor Fi at 10.0 keV: ', Fi(38, 10.0_C_DOUBLE) WRITE (6, '(A,F12.6)') 'Sr anomalous scattering factor Fii at 10.0 keV: ', Fii(38, 10.0_C_DOUBLE) WRITE (6,'(A,A)') 'Symbol of element 26 is: ',AtomicNumberToSymbol(26) WRITE (6,'(A,I3)') 'Number of element Fe is: ',SymbolToAtomicNumber('Fe') cryst => Crystal_GetCrystal('Si') IF (.NOT.ASSOCIATED(cryst)) CALL EXIT(1) WRITE (6,'(A,3F12.3)') 'Si unit cell dimensions are ',cryst%a,cryst%b,cryst%c WRITE (6,'(A,3F12.3)') 'Si unit cell angles are ',& cryst%alpha,cryst%beta,cryst%gamma WRITE (6,'(A,F12.3)') 'Si unit cell volume is ',cryst%volume WRITE (6,'(A)') 'Si atoms at ' WRITE (6,'(A)') ' Z fraction X Y Z' DO i=1,cryst%n_atom WRITE (6, '(I3,4F9.3)') cryst%atom(i)%Zatom, cryst%atom(i)%fraction,& cryst%atom(i)%x, cryst%atom(i)%y, cryst%atom(i)%z ENDDO WRITE (6,'(A)') '' !Si diffraction parameters WRITE (6, '(A)') 'Si111 at 8 KeV. Incidence at the Bragg angle:' bragg = Bragg_angle(cryst, 8.0_C_DOUBLE, 1, 1, 1) WRITE (6, '(A,F12.6,A,F12.6)') ' Bragg angle: Rad: ',bragg,' Deg: ',& bragg*180.0/PI q = Q_scattering_amplitude (cryst, 8.0_C_DOUBLE, 1, 1, 1, 1.0_C_DOUBLE) WRITE (6, '(A, F12.6)') ' Q Scattering amplitude: ',q energy = 8.0 debye_temp_factor = 1.0 i = Atomic_Factors (14, energy, q, debye_temp_factor, f0, fp, fpp) WRITE (6, '(A,F12.6,A,F12.6,A,F12.6)')& ' Atomic factors (Z=14) f0, fp, fpp: ', f0, ', ',fp, ', i*',fpp rel_angle = 1.0 F_H = Crystal_F_H_StructureFactor (cryst, energy, 1, 1, 1, debye_temp_factor,& rel_angle) WRITE (6, '(A,F12.6,A,F12.6,A)') ' FH(1,1,1) structure factor: (',& REAL(F_H),', ',AIMAG(F_H),')' F_0 = Crystal_F_H_StructureFactor (cryst, energy, 0, 0, 0, debye_temp_factor,& rel_angle) WRITE (6, '(A,F12.6,A,F12.6,A)') ' F0=FH(0,0,0) structure factor: (',& REAL(F_0),', ',AIMAG(F_0),')' DEALLOCATE(cryst) WRITE (6,'(A)') '' ! Diamond diffraction parameters cryst => Crystal_GetCrystal('Diamond') IF (.NOT.ASSOCIATED(cryst)) CALL EXIT(1) WRITE (6,'(A)') 'Diamond 111 at 8 KeV. Incidence at the Bragg angle:' bragg = Bragg_angle (cryst, energy, 1, 1, 1) WRITE (6, '(A,F12.6,A,F12.6)') ' Bragg angle: Rad: ',bragg,' Deg: ',& bragg*180.0/PI q = Q_scattering_amplitude (cryst, 8.0_C_DOUBLE, 1, 1, 1, rel_angle) WRITE (6, '(A, F12.6)') ' Q Scattering amplitude: ',q energy = 8.0 debye_temp_factor = 1.0 i = Atomic_Factors (6, energy, q, debye_temp_factor, f0, fp, fpp) WRITE (6, '(A,F12.6,A,F12.6,A,F12.6)')& ' Atomic factors (Z=6) f0, fp, fpp: ', f0, ', ',fp, ', i*',fpp F_H = Crystal_F_H_StructureFactor (cryst, energy, 1, 1, 1, debye_temp_factor,& rel_angle) WRITE (6, '(A,F12.6,A,F12.6,A)') ' FH(1,1,1) structure factor: (',& REAL(F_H),', ',AIMAG(F_H),')' F_0 = Crystal_F_H_StructureFactor (cryst, energy, 0, 0, 0, debye_temp_factor,& rel_angle) WRITE (6, '(A,F12.6,A,F12.6,A)') ' F0=FH(0,0,0) structure factor: (',& REAL(F_0),', ',AIMAG(F_0),')' F_Hbar = Crystal_F_H_StructureFactor (cryst, energy, -1, -1, -1, debye_temp_factor,& rel_angle) dw = 1e10 * 2 * (R_E / cryst%volume) * & (KEV2ANGST * KEV2ANGST/ (energy *energy)) * & SQRT(ABS(F_H * F_Hbar)) / PI / SIN(2*bragg) WRITE (6, '(A,F12.6,A)') ' Darwin width: ',1.0E6*dw,' micro-radians' DEALLOCATE(cryst) WRITE (6,'(A)') '' ! Alpha Quartz diffraction parameters cryst => Crystal_GetCrystal('AlphaQuartz') IF (.NOT.ASSOCIATED(cryst)) CALL EXIT(1) WRITE (6, '(A)') 'Alpha Quartz 020 at 8 KeV. Incidence at the Bragg angle:' bragg = Bragg_angle (cryst, energy, 0, 2, 0) WRITE (6, '(A,F12.6,A,F12.6)') ' Bragg angle: Rad: ',bragg,' Deg: ',& bragg*180.0/PI q = Q_scattering_amplitude (cryst, 8.0_C_DOUBLE, 0, 2, 0, rel_angle) WRITE (6, '(A, F12.6)') ' Q Scattering amplitude: ',q i = Atomic_Factors (8, energy, q, debye_temp_factor, f0, fp, fpp) WRITE (6, '(A,F12.6,A,F12.6,A,F12.6)')& ' Atomic factors (Z=8) f0, fp, fpp: ', f0, ', ',fp, ', i*',fpp F_H = Crystal_F_H_StructureFactor (cryst, energy, 0, 2, 0, debye_temp_factor,& rel_angle) WRITE (6, '(A,F12.6,A,F12.6,A)') ' FH(0,2,0) structure factor: (',& REAL(F_H),', ',AIMAG(F_H),')' F_0 = Crystal_F_H_StructureFactor (cryst, energy, 0, 0, 0, debye_temp_factor,& rel_angle) WRITE (6, '(A,F12.6,A,F12.6,A)') ' F0=FH(0,0,0) structure factor: (',& REAL(F_0),', ',AIMAG(F_0),')' WRITE (6,'(A)') '' ! Muscovite diffraction parameters cryst => Crystal_GetCrystal('Muscovite') IF (.NOT.ASSOCIATED(cryst)) CALL EXIT(1) WRITE (6, '(A)') 'Muscovite 331 at 8 KeV. Incidence at the Bragg angle:' bragg = Bragg_angle (cryst, energy, 3, 3, 1) WRITE (6, '(A,F12.6,A,F12.6)') ' Bragg angle: Rad: ',bragg,' Deg: ',& bragg*180.0/PI q = Q_scattering_amplitude (cryst, 8.0_C_DOUBLE, 3, 3, 1, rel_angle) WRITE (6, '(A, F12.6)') ' Q Scattering amplitude: ',q i = Atomic_Factors (19, energy, q, debye_temp_factor, f0, fp, fpp) WRITE (6, '(A,F12.6,A,F12.6,A,F12.6)')& ' Atomic factors (Z=19) f0, fp, fpp: ', f0, ', ',fp, ', i*',fpp F_H = Crystal_F_H_StructureFactor (cryst, energy, 3, 3, 1, debye_temp_factor,& rel_angle) WRITE (6, '(A,F12.6,A,F12.6,A)') ' FH(3,3,1) structure factor: (',& REAL(F_H),', ',AIMAG(F_H),')' F_0 = Crystal_F_H_StructureFactor (cryst, energy, 0, 0, 0, debye_temp_factor,& rel_angle) WRITE (6, '(A,F12.6,A,F12.6,A)') ' F0=FH(0,0,0) structure factor: (',& REAL(F_0),', ',AIMAG(F_0),')' DEALLOCATE(cryst) crystals => Crystal_GetCrystalsList() WRITE (6, '(A)') 'List of available crystals' DO i=1,SIZE(crystals) WRITE (6, '(A,I3,A,A)') ' Crystal',i,': ',TRIM(crystals(i)) ENDDO WRITE (6, '(A)') '' cdn => GetCompoundDataNISTByName('Uranium Monocarbide') WRITE (6, '(A)') 'Uranium Monocarbide' WRITE (6, '(A,A)') ' Name: ', TRIM(cdn%name) WRITE (6, '(A,F12.6,A)') ' Density: ',cdn%density,' g/cm3' DO i=1,cdn%nElements WRITE (6, '(A,I2,A,F12.6,A)') ' Element ',& cdn%Elements(i),': ', & cdn%massFractions(i)*100.0, ' %' ENDDO DEALLOCATE(cdn) cdn => GetCompoundDataNISTByIndex(NIST_COMPOUND_BRAIN_ICRP) WRITE (6, '(A)') 'NIST_COMPOUND_BRAIN_ICRP' WRITE (6, '(A,A)') ' Name: ', TRIM(cdn%name) WRITE (6, '(A,F12.6,A)') ' Density: ',cdn%density,' g/cm3' DO i=1,cdn%nElements WRITE (6, '(A,I2,A,F12.6,A)') ' Element ',& cdn%Elements(i),': ', & cdn%massFractions(i)*100.0, ' %' ENDDO DEALLOCATE(cdn) nistCompounds => GetCompoundDataNISTList() WRITE (6, '(A)') 'List of available NIST compounds' DO i=1,SIZE(nistCompounds) WRITE (6, '(A,I3,A,A)') ' Compound ',i,': ',TRIM(nistCompounds(i)) ENDDO DEALLOCATE(nistCompounds) WRITE (6, '(A)') '' rnd => GetRadioNuclideDataByName('109Cd') WRITE (6, '(A)') '109Cd' WRITE (6, '(A,A)') ' Name: ', TRIM(rnd%name) WRITE (6, '(A,I3)') ' Z: ',rnd%Z WRITE (6, '(A,I3)') ' A: ',rnd%A WRITE (6, '(A,I3)') ' N: ',rnd%N WRITE (6, '(A,I3)') ' Z_xray: ',rnd%Z_xray WRITE (6, '(A)') ' X-rays: ' DO i=1,rnd%nXrays WRITE (6, '(A,F12.6,A,F12.6)') ' ',& LineEnergy(rnd%Z_xray, rnd%XrayLines(i)),' keV -> ', & rnd%XrayIntensities(i) ENDDO WRITE (6, '(A)') ' Gamma rays: ' DO i=1,rnd%nGammas WRITE (6, '(A,F12.6,A,F12.6)') ' ',& rnd%GammaEnergies(i),' keV -> ', & rnd%GammaIntensities(i) ENDDO DEALLOCATE(rnd) rnd => GetRadioNuclideDataByIndex(RADIO_NUCLIDE_125I) WRITE (6, '(A)') 'RADIO_NUCLIDE_125I' WRITE (6, '(A,A)') ' Name: ', TRIM(rnd%name) WRITE (6, '(A,I3)') ' Z: ',rnd%Z WRITE (6, '(A,I3)') ' A: ',rnd%A WRITE (6, '(A,I3)') ' N: ',rnd%N WRITE (6, '(A,I3)') ' Z_xray: ',rnd%Z_xray WRITE (6, '(A)') ' X-rays: ' DO i=1,rnd%nXrays WRITE (6, '(A,F12.6,A,F12.6)') ' ',& LineEnergy(rnd%Z_xray, rnd%XrayLines(i)),' keV -> ', & rnd%XrayIntensities(i) ENDDO WRITE (6, '(A)') ' Gamma rays: ' DO i=1,rnd%nGammas WRITE (6, '(A,F12.6,A,F12.6)') ' ',& rnd%GammaEnergies(i),' keV -> ', & rnd%GammaIntensities(i) ENDDO DEALLOCATE(rnd) radioNuclides => GetRadioNuclideDataList() WRITE (6, '(A)') 'List of available radionuclides' DO i=1,SIZE(radioNuclides) WRITE (6, '(A,I3,A,A)') ' Radionuclide',i,': ',TRIM(radioNuclides(i)) ENDDO DEALLOCATE(radioNuclides) WRITE (6,'(A)') '' WRITE (6,'(A)') '--------------------------- END OF XRLEXAMPLE3 -------------------------------' WRITE (6,'(A)') '' ENDPROGRAM