--[[ Drawing "spirograph" curves - epitrochoids, cycolids, roulettes Copyright (C) 2009 Werner Smekal This file is part of PLplot. PLplot is free software you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation either version 2 of the License, or (at your option) any later version. PLplot is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with PLplot if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA --]] -- initialise Lua bindings for PLplot examples. dofile("plplot_examples.lua") -------------------------------------------------------------------------- -- Calculate greatest common divisor following pseudo-code for the -- Euclidian algorithm at http://en.wikipedia.org/wiki/Euclidean_algorithm function gcd (a, b) a = math.floor(math.abs(a)) b = math.floor(math.abs(b)) while b~=0 do t = b b = a % b a = t end return a end function cycloid() -- TODO end function spiro( params, fill ) NPNT = 2000 xcoord = {} ycoord = {} -- Fill the coordinates -- Proper termination of the angle loop very near the beginning -- point, see -- http://mathforum.org/mathimages/index.php/Hypotrochoid. windings = math.floor(math.abs(params[2])/gcd(params[1], params[2])) steps = math.floor(NPNT/windings) dphi = 2*math.pi/steps for i = 1, windings*steps+1 do phi = (i-1) * dphi phiw = (params[1]-params[2])/params[2]*phi xcoord[i] = (params[1]-params[2])*math.cos(phi) + params[3]*math.cos(phiw) ycoord[i] = (params[1]-params[2])*math.sin(phi) - params[3]*math.sin(phiw) if i == 1 then xmin = xcoord[i] xmax = xcoord[i] ymin = ycoord[i] ymax = ycoord[i] end if xmin>xcoord[i] then xmin = xcoord[i] end if xmax<xcoord[i] then xmax = xcoord[i] end if ymin>ycoord[i] then ymin = ycoord[i] end if ymax<ycoord[i] then ymax = ycoord[i] end end xrange_adjust = 0.15*(xmax-xmin) xmin = xmin - xrange_adjust xmax = xmax + xrange_adjust yrange_adjust = 0.15*(ymax-ymin) ymin = ymin - yrange_adjust ymax = ymax + yrange_adjust pl.wind(xmin, xmax, ymin, ymax) pl.col0(1) if fill == 1 then pl.fill(xcoord, ycoord) else pl.line(xcoord, ycoord) end end function arcs() NSEG = 8 theta = 0.0 dtheta = 360.0 / NSEG pl.env( -10.0, 10.0, -10.0, 10.0, 1, 0 ) -- Plot segments of circle in different colors for i = 0, NSEG-1 do pl.col0( i%2 + 1 ) pl.arc(0.0, 0.0, 8.0, 8.0, theta, theta + dtheta, 0.0, 0) theta = theta + dtheta end -- Draw several filled ellipses inside the circle at different -- angles. a = 3.0 b = a * math.tan( (dtheta/180.0*math.pi)/2.0 ) theta = dtheta/2.0 for i = 0, NSEG-1 do pl.col0( 2 - i%2 ) pl.arc( a*math.cos(theta/180.0*math.pi), a*math.sin(theta/180.0*math.pi), a, b, 0.0, 360.0, theta, 1) theta = theta + dtheta end end ---------------------------------------------------------------------------- -- main -- -- Generates two kinds of plots: -- - construction of a cycloid (animated) -- - series of epitrochoids and hypotrochoids ---------------------------------------------------------------------------- -- R, r, p, N -- R and r should be integers to give correct termination of the -- angle loop using gcd. -- N.B. N is just a place holder since it is no longer used -- (because we now have proper termination of the angle loop). params = { { 21, 7, 7, 3 }, -- Deltoid { 21, 7, 10, 3 }, { 21, -7, 10, 3 }, { 20, 3, 7, 20 }, { 20, 3, 10, 20 }, { 20, -3, 10, 20 }, { 20, 13, 7, 20 }, { 20, 13, 20, 20 }, { 20,-13, 20, 20 } } -- plplot initialization -- Parse and process command line arguments pl.parseopts(arg, pl.PL_PARSE_FULL) -- Initialize plplot pl.init() -- Illustrate the construction of a cycloid cycloid() -- Loop over the various curves -- First an overview, then all curves one by one pl.ssub(3, 3) -- Three by three window fill = 0 for i = 1, 9 do pl.adv(0) pl.vpor(0, 1, 0, 1) spiro(params[i], fill) end pl.adv(0) pl.ssub(1, 1) -- One window per curve for i = 1, 9 do pl.adv(0) pl.vpor(0, 1, 0, 1) spiro(params[i], fill) end -- fill the curves. fill = 1 pl.adv(0) pl.ssub(1, 1) -- One window per curve for i = 1, 9 do pl.adv(0) pl.vpor(0, 1, 0, 1) spiro(params[i], fill) end arcs() pl.plend()