// Multi-lingual version of the first page of example 4. // // Copyright (C) 2009 Werner Smekal // // Thanks to the following for providing translated strings for this example: // Valery Pipin (Russian) // // This file is part of PLplot. // // PLplot is free software; you can redistribute it and/or modify // it under the terms of the GNU Library General Public License as published // by the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // PLplot is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Library General Public License for more details. // // You should have received a copy of the GNU Library General Public License // along with PLplot; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA // // // // This example designed just for devices (e.g., psttfc and the // cairo-related devices) that use the pango and fontconfig libraries. The // best choice of glyph is selected by fontconfig and automatically rendered // by pango in way that is sensitive to complex text layout (CTL) language // issues for each unicode character in this example. Of course, you must // have the appropriate TrueType fonts installed to have access to all the // required glyphs. // // Translation instructions: The strings to be translated are given by // x_label, y_label, alty_label, title_label, and line_label below. The // encoding used must be UTF-8. // // The following strings to be translated involve some scientific/mathematical // jargon which is now discussed further to help translators. // // (1) dB is a decibel unit, see http://en.wikipedia.org/wiki/Decibel . // (2) degrees is an angular measure, see // http://en.wikipedia.org/wiki/Degree_(angle) . // (3) low-pass filter is one that transmits (passes) low frequencies. // (4) pole is in the mathematical sense, see // http://en.wikipedia.org/wiki/Pole_(complex_analysis) . "Single Pole" // means a particular mathematical transformation of the filter function has // a single pole, see // http://ccrma.stanford.edu/~jos/filters/Pole_Zero_Analysis_I.html . // Furthermore, a single-pole filter must have an inverse square decline // (or -20 db/decade). Since the filter plotted here does have that // characteristic, it must by definition be a single-pole filter, see also // http://www-k.ext.ti.com/SRVS/Data/ti/KnowledgeBases/analog/document/faqs/1p.htm // (5) decade represents a factor of 10, see // http://en.wikipedia.org/wiki/Decade_(log_scale) . // import std.string; import std.math; import plplot; string[] x_label = [ "Frequency", "Частота", null ]; string[] y_label = [ "Amplitude (dB)", "Амплитуда (dB)", null ]; string[] alty_label = [ "Phase shift (degrees)", "Фазовый сдвиг (градусы)", null ]; // Short rearranged versions of y_label and alty_label. string[][] legend_text = [ [ "Amplitude", "Phase shift" ], [ "Амплитуда", "Фазовый сдвиг" ], null ]; string[] title_label = [ "Single Pole Low-Pass Filter", "Однополюсный Низко-Частотный Фильтр", null ]; string[] line_label = [ "-20 dB/decade", "-20 dB/десяток", null ]; //-------------------------------------------------------------------------- // main // // Illustration of logarithmic axes, and redefinition of window. //-------------------------------------------------------------------------- int main( char[][] args ) { // Parse and process command line arguments plparseopts( args, PL_PARSE_FULL ); // Initialize plplot plinit(); plfont( 2 ); // Make log plots using two different styles. int i = 0; while ( x_label[i] ) { plot1( 0, x_label[i], y_label[i], alty_label[i], title_label[i], line_label[i], legend_text[i] ); i++; } plend(); return 0; } //-------------------------------------------------------------------------- // plot1 // // Log-linear plot. //-------------------------------------------------------------------------- void plot1( int type, string x_label, string y_label, string alty_label, string title_label, string line_label, string[] legend_text ) { // Set up data for log plot PLFLT[101] freql, ampl, phase; PLFLT f0 = 1.0, freq; PLINT nlegend = 2; string[] symbols; PLINT[] opt_array; PLINT[] text_colors; PLINT[] box_colors; PLINT[] box_patterns; PLFLT[] box_scales; PLFLT[] box_line_widths; PLINT[] line_colors; PLINT[] line_styles; PLFLT[] line_widths; PLINT[] symbol_numbers, symbol_colors; PLFLT[] symbol_scales; PLFLT legend_width, legend_height; for ( int i = 0; i < 101; i++ ) { freql[i] = -2.0 + i / 20.0; freq = pow( 10.0, freql[i] ); ampl[i] = 20.0 * log10( 1.0 / sqrt( 1.0 + pow( ( freq / f0 ), 2. ) ) ); phase[i] = -( 180.0 / PI ) * atan( freq / f0 ); } pladv( 0 ); plvpor( 0.15, 0.85, 0.1, 0.9 ); plwind( -2.0, 3.0, -80.0, 0.0 ); // Try different axis and labelling styles. plcol0( 1 ); switch ( type ) { case 0: plbox( "bclnst", 0.0, 0, "bnstv", 0.0, 0 ); break; case 1: plbox( "bcfghlnst", 0.0, 0, "bcghnstv", 0.0, 0 ); break; default: break; } // Plot ampl vs freq plcol0( 2 ); plline( freql, ampl ); plcol0( 2 ); plptex( 1.6, -30.0, 1.0, -20.0, 0.5, line_label ); // Put labels on plcol0( 1 ); plmtex( "b", 3.2, 0.5, 0.5, x_label ); plmtex( "t", 2.0, 0.5, 0.5, title_label ); plcol0( 2 ); plmtex( "l", 5.0, 0.5, 0.5, y_label ); // For the gridless case, put phase vs freq on same plot if ( type == 0 ) { plcol0( 1 ); plwind( -2.0, 3.0, -100.0, 0.0 ); plbox( "", 0.0, 0, "cmstv", 30.0, 3 ); plcol0( 3 ); plline( freql, phase ); plstring( freql, phase, "#(728)" ); plcol0( 3 ); plmtex( "r", 5.0, 0.5, 0.5, alty_label ); } // Initialize arrays needed for pllegend. opt_array.length = nlegend; text_colors.length = nlegend; line_colors.length = nlegend; line_styles.length = nlegend; line_widths.length = nlegend; box_colors.length = nlegend; box_patterns.length = nlegend; box_scales.length = nlegend; box_line_widths.length = nlegend; symbol_numbers.length = nlegend; symbol_colors.length = nlegend; symbol_scales.length = nlegend; symbols.length = nlegend; // Draw a legend // First legend entry. opt_array[0] = PL_LEGEND_LINE; text_colors[0] = 2; line_colors[0] = 2; line_styles[0] = 1; line_widths[0] = 1.; // Note from the above opt_array the first symbol (and box) indices // do not have to be specified // Second legend entry. opt_array[1] = PL_LEGEND_LINE | PL_LEGEND_SYMBOL; text_colors[1] = 3; line_colors[1] = 3; line_styles[1] = 1; line_widths[1] = 1.; symbol_colors[1] = 3; symbol_scales[1] = 1.; symbol_numbers[1] = 4; symbols[1] = "#(728)"; // Note from the above opt_array the second box array indices // do not have to be specified plscol0a( 15, 32, 32, 32, 0.70 ); pllegend( &legend_width, &legend_height, PL_LEGEND_BACKGROUND | PL_LEGEND_BOUNDING_BOX, 0, 0.0, 0.0, 0.1, 15, 1, 1, 0, 0, opt_array, 1.0, 1.0, 2.0, 1., text_colors, legend_text, box_colors, box_patterns, box_scales, box_line_widths, line_colors, line_styles, line_widths, symbol_colors, symbol_scales, symbol_numbers, symbols ); }