//
// Copyright 2007, 2008, 2009, 2010, 2011 Hezekiah M. Carty
// Copyright (C) 2016-2018 Alan W. Irwin
//
// This file is part of PLplot.
//
// PLplot is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// PLplot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with PLplot. If not, see .
//
// The "usual" OCaml includes
#include
#include
#include
#include
#include
#include
#include
#include
#include
#undef snprintf
#include
#define MAX_EXCEPTION_MESSAGE_LENGTH 1000
#define CAML_PLPLOT_PLOTTER_FUNC_NAME "caml_plplot_plotter"
#define CAML_PLPLOT_MAPFORM_FUNC_NAME "caml_plplot_mapform"
#define CAML_PLPLOT_DEFINED_FUNC_NAME "caml_plplot_defined"
#define CAML_PLPLOT_LABEL_FUNC_NAME "caml_plplot_customlabel"
#define CAML_PLPLOT_ABORT_FUNC_NAME "caml_plplot_abort"
#define CAML_PLPLOT_EXIT_FUNC_NAME "caml_plplot_exit"
#define CAML_PLPLOT_TRANSFORM_FUNC_NAME "caml_plplot_transform"
typedef void ( *ML_PLOTTER_FUNC )( PLFLT, PLFLT, PLFLT*, PLFLT*, PLPointer );
typedef PLINT ( *ML_DEFINED_FUNC )( PLFLT, PLFLT );
typedef void ( *ML_MAPFORM_FUNC )( PLINT, PLFLT*, PLFLT* );
typedef void ( *ML_LABEL_FUNC )( PLINT, PLFLT, char*, PLINT, PLPointer );
typedef PLINT ( *ML_VARIANT_FUNC )( PLINT );
//
//
// CALLBACK WRAPPERS
//
//
// A simple routine to wrap a properly registered OCaml callback in a form
// usable by PLPlot routines. If an appropriate callback is not registered
// then the PLPlot built-in pltr0 function is used instead.
void ml_plotter( PLFLT x, PLFLT y, PLFLT *tx, PLFLT *ty, PLPointer pltr_data )
{
CAMLparam0();
CAMLlocal1( result );
// Get the OCaml callback function (if there is one)
static value * pltr = NULL;
if ( pltr == NULL )
pltr = caml_named_value( CAML_PLPLOT_PLOTTER_FUNC_NAME );
// No check to see if a callback function has been designated yet,
// because that is checked before we get to this point.
result =
caml_callback2( *pltr, caml_copy_double( x ), caml_copy_double( y ) );
double new_x, new_y;
new_x = Double_val( Field( result, 0 ) );
new_y = Double_val( Field( result, 1 ) );
*tx = new_x;
*ty = new_y;
CAMLreturn0;
}
// A simple routine to wrap a properly registered OCaml callback in a form
// usable by PLPlot routines. If an appropriate callback is not registered
// then the result is always 1 (the data point is defined).
// This function is used in the plshade* functions to determine if a given data
// point is valid/defined or not.
PLINT ml_defined( PLFLT x, PLFLT y )
{
CAMLparam0();
CAMLlocal1( result );
// The result which will be returned to the user.
PLINT is_it_defined;
// Get the OCaml callback function (if there is one)
static value * defined = NULL;
if ( defined == NULL )
defined = caml_named_value( CAML_PLPLOT_DEFINED_FUNC_NAME );
// No check to see if a callback function has been designated yet,
// because that is checked before we get to this point.
result =
caml_callback2( *defined, caml_copy_double( x ), caml_copy_double( y ) );
is_it_defined = Int_val( result );
CAMLreturn( is_it_defined );
}
// A simple routine to wrap a properly registered OCaml callback in a form
// usable by PLPlot routines. If an appropriate callback is not registered
// then nothing is done.
void ml_mapform( PLINT n, PLFLT *x, PLFLT *y )
{
CAMLparam0();
CAMLlocal1( result );
// Get the OCaml callback function (if there is one)
static value * mapform = NULL;
if ( mapform == NULL )
mapform = caml_named_value( CAML_PLPLOT_MAPFORM_FUNC_NAME );
// No check to see if a callback function has been designated yet,
// because that is checked before we get to this point.
int i;
for ( i = 0; i < n; i++ )
{
result =
caml_callback2( *mapform,
caml_copy_double( x[i] ), caml_copy_double( y[i] ) );
double new_x, new_y;
new_x = Double_val( Field( result, 0 ) );
new_y = Double_val( Field( result, 1 ) );
x[i] = new_x;
y[i] = new_y;
}
CAMLreturn0;
}
// A simple routine to wrap a properly registered OCaml callback in a form
// usable by PLPlot routines.
void ml_labelfunc( PLINT axis, PLFLT n, char *label, PLINT length, PLPointer d )
{
CAMLparam0();
CAMLlocal1( result );
// Get the OCaml callback function (if there is one)
static value * callback = NULL;
if ( callback == NULL )
callback = caml_named_value( CAML_PLPLOT_LABEL_FUNC_NAME );
// No check to see if a callback function has been designated yet,
// because that is checked before we get to this point.
result =
caml_callback2( *callback, Val_int( axis - 1 ), caml_copy_double( n ) );
// Copy the OCaml callback output to the proper location.
snprintf( label, length, "%s", String_val( result ) );
CAMLreturn0;
}
// OCaml callback for plsabort
void ml_abort( const char* message )
{
CAMLparam0();
CAMLlocal1( result );
// Get the OCaml callback function (if there is one)
static value * handler = NULL;
if ( handler == NULL )
handler = caml_named_value( CAML_PLPLOT_ABORT_FUNC_NAME );
// No check to see if a callback function has been designated yet,
// because that is checked before we get to this point.
result =
caml_callback( *handler, caml_copy_string( message ) );
CAMLreturn0;
}
// OCaml callback for plsexit
int ml_exit( const char* message )
{
CAMLparam0();
CAMLlocal1( result );
// Get the OCaml callback function (if there is one)
static value * handler = NULL;
if ( handler == NULL )
handler = caml_named_value( CAML_PLPLOT_EXIT_FUNC_NAME );
// No check to see if a callback function has been designated yet,
// because that is checked before we get to this point.
result =
caml_callback( *handler, caml_copy_string( message ) );
CAMLreturn( Int_val( result ) );
}
// A simple routine to wrap a properly registered OCaml callback in a form
// usable by PLPlot routines. If an appropriate callback is not registered
// then nothing is done.
void ml_transform( PLFLT x, PLFLT y, PLFLT *xt, PLFLT *yt, PLPointer data )
{
CAMLparam0();
CAMLlocal1( result );
// Get the OCaml callback function (if there is one)
static value * transform = NULL;
if ( transform == NULL )
transform = caml_named_value( CAML_PLPLOT_TRANSFORM_FUNC_NAME );
// No check to see if a callback function has been designated yet,
// because that is checked before we get to this point.
result =
caml_callback2( *transform, caml_copy_double( x ), caml_copy_double( y ) );
*xt = Double_val( Field( result, 0 ) );
*yt = Double_val( Field( result, 1 ) );
CAMLreturn0;
}
// Check if the matching OCaml callback is defined. Return NULL if it is not,
// and the proper function pointer if it is.
ML_PLOTTER_FUNC get_ml_plotter_func()
{
static value * pltr = NULL;
if ( pltr == NULL )
pltr = caml_named_value( CAML_PLPLOT_PLOTTER_FUNC_NAME );
if ( pltr == NULL || Val_int( 0 ) == *pltr )
{
// No plotter defined
return NULL;
}
else
{
// Plotter is defined
return ml_plotter;
}
}
ML_DEFINED_FUNC get_ml_defined_func()
{
static value * defined = NULL;
if ( defined == NULL )
defined = caml_named_value( CAML_PLPLOT_DEFINED_FUNC_NAME );
if ( defined == NULL || Val_int( 0 ) == *defined )
{
// No plotter defined
return NULL;
}
else
{
// Plotter is defined
return ml_defined;
}
}
ML_MAPFORM_FUNC get_ml_mapform_func()
{
static value * mapform = NULL;
if ( mapform == NULL )
mapform = caml_named_value( CAML_PLPLOT_MAPFORM_FUNC_NAME );
if ( mapform == NULL || Val_int( 0 ) == *mapform )
{
// No plotter defined
return NULL;
}
else
{
// Plotter is defined
return ml_mapform;
}
}
// Custom wrapper for plslabelfunc
value ml_plslabelfunc( value unit )
{
CAMLparam1( unit );
static value * label = NULL;
if ( label == NULL )
label = caml_named_value( CAML_PLPLOT_LABEL_FUNC_NAME );
if ( label == NULL || Val_int( 0 ) == *label )
{
// No plotter defined
plslabelfunc( NULL, NULL );
}
else
{
// Plotter is defined
plslabelfunc( ml_labelfunc, NULL );
}
CAMLreturn( Val_unit );
}
// Custom wrappers for plsabort and plsexit
value ml_plsabort( value unit )
{
CAMLparam1( unit );
static value * handler = NULL;
if ( handler == NULL )
handler = caml_named_value( CAML_PLPLOT_ABORT_FUNC_NAME );
if ( handler == NULL || Val_int( 0 ) == *handler )
{
// No handler defined
plsabort( NULL );
}
else
{
// Handler is defined
plsabort( ml_abort );
}
CAMLreturn( Val_unit );
}
value ml_plsexit( value unit )
{
CAMLparam1( unit );
static value * handler = NULL;
if ( handler == NULL )
handler = caml_named_value( CAML_PLPLOT_EXIT_FUNC_NAME );
if ( handler == NULL || Val_int( 0 ) == *handler )
{
// No handler defined
plsexit( NULL );
}
else
{
// Handler is defined
plsexit( ml_exit );
}
CAMLreturn( Val_unit );
}
// Set a global coordinate transform
value ml_plstransform( value unit )
{
CAMLparam1( unit );
static value * handler = NULL;
if ( handler == NULL )
handler = caml_named_value( CAML_PLPLOT_TRANSFORM_FUNC_NAME );
if ( handler == NULL || Val_int( 0 ) == *handler )
{
// No handler defined
plstransform( NULL, NULL );
}
else
{
// Handler is defined
plstransform( ml_transform, NULL );
}
CAMLreturn( Val_unit );
}
//
//
// CONTOURING, SHADING and IMAGE FUNCTIONS
//
//
//
// void
// c_plcont(PLFLT **f, PLINT nx, PLINT ny, PLINT kx, PLINT lx,
// PLINT ky, PLINT ly, PLFLT *clevel, PLINT nlevel,
// void (*pltr) (PLFLT, PLFLT, PLFLT *, PLFLT *, PLPointer),
// PLPointer pltr_data);
//
void ml_plcont( const PLFLT **f, PLINT nx, PLINT ny,
PLINT kx, PLINT lx, PLINT ky, PLINT ly,
PLFLT *clevel, PLINT nlevel )
{
if ( get_ml_plotter_func() == NULL )
{
// This is handled in PLplot, but the error is raised here to clarify
// what the user needs to do since the custom plotter is defined
// separately from the call to plcont.
caml_invalid_argument( "A custom plotter must be defined \
before calling plcont" );
}
else
{
c_plcont( f, nx, ny, kx, lx, ky, ly, clevel, nlevel,
get_ml_plotter_func(), (void *) 1 );
}
}
//
// void
// c_plshade(PLFLT **a, PLINT nx, PLINT ny, PLINT (*defined) (PLFLT, PLFLT),
// PLFLT left, PLFLT right, PLFLT bottom, PLFLT top,
// PLFLT shade_min, PLFLT shade_max,
// PLINT sh_cmap, PLFLT sh_color, PLINT sh_width,
// PLINT min_color, PLINT min_width,
// PLINT max_color, PLINT max_width,
// void (*fill) (PLINT, PLFLT *, PLFLT *), PLBOOL rectangular,
// void (*pltr) (PLFLT, PLFLT, PLFLT *, PLFLT *, PLPointer),
// PLPointer pltr_data);
//
void ml_plshade( const PLFLT **a, PLINT nx, PLINT ny,
PLFLT left, PLFLT right, PLFLT bottom, PLFLT top,
PLFLT shade_min, PLFLT shade_max,
PLINT sh_cmap, PLFLT sh_color, PLFLT sh_width,
PLINT min_color, PLFLT min_width,
PLINT max_color, PLFLT max_width,
PLBOOL rectangular )
{
c_plshade( a, nx, ny,
get_ml_defined_func(),
left, right, bottom, top,
shade_min, shade_max,
sh_cmap, sh_color, sh_width, min_color, min_width,
max_color, max_width, plfill, rectangular,
get_ml_plotter_func(), (void *) 1 );
}
//
// void
// c_plshades( PLFLT **a, PLINT nx, PLINT ny, PLINT (*defined) (PLFLT, PLFLT),
// PLFLT xmin, PLFLT xmax, PLFLT ymin, PLFLT ymax,
// PLFLT *clevel, PLINT nlevel, PLINT fill_width,
// PLINT cont_color, PLINT cont_width,
// void (*fill) (PLINT, PLFLT *, PLFLT *), PLBOOL rectangular,
// void (*pltr) (PLFLT, PLFLT, PLFLT *, PLFLT *, PLPointer),
// PLPointer pltr_data);
//
void ml_plshades( const PLFLT **a, PLINT nx, PLINT ny,
PLFLT xmin, PLFLT xmax, PLFLT ymin, PLFLT ymax,
PLFLT *clevel, PLINT nlevel, PLFLT fill_width,
PLINT cont_color, PLFLT cont_width,
PLBOOL rectangular )
{
c_plshades( a, nx, ny,
get_ml_defined_func(),
xmin, xmax, ymin, ymax,
clevel, nlevel, fill_width,
cont_color, cont_width,
plfill, rectangular,
get_ml_plotter_func(),
(void *) 1 );
}
//
// void
// c_plimagefr(PLFLT **idata, PLINT nx, PLINT ny,
// PLFLT xmin, PLFLT xmax, PLFLT ymin, PLFLT ymax, PLFLT zmin, PLFLT zmax,
// PLFLT valuemin, PLFLT valuemax,
// void (*pltr) (PLFLT, PLFLT, PLFLT *, PLFLT *, PLPointer),
// PLPointer pltr_data);
//
void ml_plimagefr( const PLFLT **idata, PLINT nx, PLINT ny,
PLFLT xmin, PLFLT xmax, PLFLT ymin, PLFLT ymax,
PLFLT zmin, PLFLT zmax,
PLFLT valuemin, PLFLT valuemax )
{
c_plimagefr( idata, nx, ny,
xmin, xmax, ymin, ymax,
zmin, zmax,
valuemin, valuemax,
get_ml_plotter_func(),
(void *) 1 );
}
//
// void
// c_plvect(PLFLT **u, PLFLT **v, PLINT nx, PLINT ny, PLFLT scale,
// void (*pltr) (PLFLT, PLFLT, PLFLT *, PLFLT *, PLPointer),
// PLPointer pltr_data);
//
void ml_plvect( const PLFLT **u, const PLFLT **v, PLINT nx, PLINT ny, PLFLT scale )
{
c_plvect( u, v, nx, ny, scale,
get_ml_plotter_func(),
(void *) 1 );
}
//
// Wrapper to reset vector rendering
//
void ml_plsvect_reset()
{
c_plsvect( NULL, NULL, 0, 0 );
}
// Plot continental outline in world coordinates
// c_plmap( PLMAPFORM_callback mapform, PLCHAR_VECTOR name,
// PLFLT minx, PLFLT maxx, PLFLT miny, PLFLT maxy );
void ml_plmap( PLCHAR_VECTOR name,
PLFLT minx, PLFLT maxx, PLFLT miny, PLFLT maxy )
{
c_plmap( get_ml_mapform_func(),
name, minx, maxx, miny, maxy );
}
// Plot map outlines
// void
// c_plmapline( PLMAPFORM_callback mapform, PLCHAR_VECTOR name,
// PLFLT minx, PLFLT maxx, PLFLT miny, PLFLT maxy,
// PLINT_VECTOR plotentries, PLINT nplotentries );
void ml_plmapline( PLCHAR_VECTOR name,
PLFLT minx, PLFLT maxx, PLFLT miny, PLFLT maxy,
PLINT_VECTOR plotentries, PLINT nplotentries )
{
if ( nplotentries > 0 )
c_plmapline( get_ml_mapform_func(), name,
minx, maxx, miny, maxy,
plotentries, nplotentries );
else
c_plmapline( get_ml_mapform_func(), name,
minx, maxx, miny, maxy,
NULL, nplotentries );
}
// Plot map points
// void
// c_plmapstring( PLMAPFORM_callback mapform,
// PLCHAR_VECTOR name, PLCHAR_VECTOR string,
// PLFLT minx, PLFLT maxx, PLFLT miny, PLFLT maxy,
// PLINT_VECTOR plotentries, PLINT nplotentries );
void ml_plmapstring( PLCHAR_VECTOR name, PLCHAR_VECTOR string,
PLFLT minx, PLFLT maxx, PLFLT miny, PLFLT maxy,
PLINT_VECTOR plotentries, PLINT nplotentries )
{
if ( nplotentries > 0 )
c_plmapstring( get_ml_mapform_func(), name, string,
minx, maxx, miny, maxy,
plotentries, nplotentries );
else
c_plmapstring( get_ml_mapform_func(), name, string,
minx, maxx, miny, maxy,
NULL, nplotentries );
}
// Plot map text
// void
// c_plmaptex( PLMAPFORM_callback mapform,
// PLCHAR_VECTOR name, PLFLT dx, PLFLT dy, PLFLT just, PLCHAR_VECTOR text,
// PLFLT minx, PLFLT maxx, PLFLT miny, PLFLT maxy,
// PLINT plotentry );
void ml_plmaptex( PLCHAR_VECTOR name, PLFLT dx, PLFLT dy, PLFLT just, PLCHAR_VECTOR text,
PLFLT minx, PLFLT maxx, PLFLT miny, PLFLT maxy,
PLINT plotentry )
{
c_plmaptex( get_ml_mapform_func(), name, dx, dy, just, text,
minx, maxx, miny, maxy,
plotentry );
}
// Plot map fills
// void
// c_plmapfill( PLMAPFORM_callback mapform,
// PLCHAR_VECTOR name, PLFLT minx, PLFLT maxx, PLFLT miny, PLFLT maxy,
// PLINT_VECTOR plotentries, PLINT nplotentries );
void ml_plmapfill( PLCHAR_VECTOR name,
PLFLT minx, PLFLT maxx, PLFLT miny, PLFLT maxy,
PLINT_VECTOR plotentries, PLINT nplotentries )
{
if ( nplotentries > 0 )
c_plmapfill( get_ml_mapform_func(), name,
minx, maxx, miny, maxy,
plotentries, nplotentries );
else
c_plmapfill( get_ml_mapform_func(), name,
minx, maxx, miny, maxy,
NULL, nplotentries );
}
//
// void
// c_plmeridians( void (*mapform)(PLINT, PLFLT *, PLFLT *),
// PLFLT dlong, PLFLT dlat,
// PLFLT minlong, PLFLT maxlong, PLFLT minlat, PLFLT maxlat );
//
void ml_plmeridians( PLFLT dlong, PLFLT dlat,
PLFLT minlong, PLFLT maxlong, PLFLT minlat, PLFLT maxlat )
{
c_plmeridians( get_ml_mapform_func(),
dlong, dlat, minlong, maxlong, minlat, maxlat );
}
//
// void
// c_plgriddata(PLFLT *x, PLFLT *y, PLFLT *z, PLINT npts,
// PLFLT *xg, PLINT nptsx, PLFLT *yg, PLINT nptsy,
// PLFLT **zg, PLINT type, PLFLT data);
//
// This one is currently wrapped by hand, as I am not sure how to get camlidl
// to allocate zg in a way that makes plgriddata happy and doesn't require the
// user to pre-allocate the space.
value ml_plgriddata( value x, value y, value z,
value xg, value yg,
value type, value data )
{
CAMLparam5( x, y, z, xg, yg );
CAMLxparam2( type, data );
// zg holds the OCaml float array array.
// y_ml_array is a temporary structure which will be used to form each
// float array making up zg.
CAMLlocal2( zg, y_ml_array );
PLFLT **zg_local;
int npts, nptsx, nptsy;
int i, j;
// Check to make sure x, y and z are all the same length.
npts = Wosize_val( x ) / Double_wosize;
if ( ( Wosize_val( y ) / Double_wosize != Wosize_val( z ) / Double_wosize ) ||
( Wosize_val( y ) / Double_wosize != npts ) ||
( Wosize_val( z ) / Double_wosize != npts )
)
{
caml_failwith( "ml_plgriddata: x, y, z must all have the same dimensions" );
}
nptsx = Wosize_val( xg ) / Double_wosize;
nptsy = Wosize_val( yg ) / Double_wosize;
// Allocate the 2D grid in a way that will make PLplot happy
plAlloc2dGrid( &zg_local, nptsx, nptsy );
// Using "type + 1" because "type" is passed in as a variant type, so
// the indexing starts from 0 rather than 1.
c_plgriddata( (double *) x, (double *) y, (double *) z, npts, (double *) xg, nptsx,
(double *) yg, nptsy, zg_local, Int_val( type ) + 1,
Double_val( data ) );
// Allocate the X-dimension of the to-be-returned OCaml array
zg = caml_alloc( nptsx, 0 );
for ( i = 0; i < nptsx; i++ )
{
// Allocate each Y-dimension array of the OCaml array
y_ml_array = caml_alloc( nptsy * Double_wosize, Double_array_tag );
for ( j = 0; j < nptsy; j++ )
{
Store_double_field( y_ml_array, j, zg_local[i][j] );
}
caml_modify( &Field( zg, i ), y_ml_array );
}
// Free the memory used by the C array
plFree2dGrid( zg_local, nptsx, nptsy );
CAMLreturn( zg );
}
value ml_plgriddata_bytecode( value* argv, int argn )
{
return ml_plgriddata( argv[0], argv[1], argv[2], argv[3], argv[4],
argv[5], argv[6] );
}
//
// void
// c_plpoly3(PLINT n, PLFLT *x, PLFLT *y, PLFLT *z, PLBOOL *draw, PLBOOL ifcc);
//
// plpoly3 is wrapped by hand because draw has a length of (n - 1) and camlidl
// does not have a way to indicate this automatically.
void ml_plpoly3( PLINT n, PLFLT *x, PLFLT *y, PLFLT *z, PLINT ndraw, PLBOOL *draw, PLBOOL ifcc )
{
plpoly3( n, x, y, z, draw, ifcc );
}
// Raise Invalid_argument if the given value is <> 0
void plplot_check_nonzero_result( int result )
{
if ( result != 0 )
{
char exception_message[MAX_EXCEPTION_MESSAGE_LENGTH];
sprintf( exception_message, "Error, return code %d", result );
caml_invalid_argument( exception_message );
}
return;
}
// Translate the integer version of the OCaml variant to the appropriate
// PLplot constant.
int translate_parse_option( int parse_option )
{
int translated_option;
switch ( parse_option )
{
case 0: translated_option = PL_PARSE_PARTIAL; break;
case 1: translated_option = PL_PARSE_FULL; break;
case 2: translated_option = PL_PARSE_QUIET; break;
case 3: translated_option = PL_PARSE_NODELETE; break;
case 4: translated_option = PL_PARSE_SHOWALL; break;
case 5: translated_option = PL_PARSE_OVERRIDE; break;
case 6: translated_option = PL_PARSE_NOPROGRAM; break;
case 7: translated_option = PL_PARSE_NODASH; break;
case 8: translated_option = PL_PARSE_SKIP; break;
default: translated_option = -1;
}
return translated_option;
}
// Copy to a const string array
#define INIT_STRING_ARRAY( o ) \
int o ## _length; \
o ## _length = Wosize_val( o ); \
const char *c_ ## o[o ## _length]; \
for ( i = 0; i < o ## _length; i++ ) { c_ ## o[i] = String_val( Field( o, i ) ); }
// Copy to a non-const string array
#define INIT_NC_STRING_ARRAY( o ) \
int o ## _length; \
o ## _length = Wosize_val( o ); \
char *c_ ## o[o ## _length]; \
for ( i = 0; i < o ## _length; i++ ) { c_ ## o[i] = String_val( Field( o, i ) ); }
// Copy an int array, o, of n element to the C array c
#define INIT_INT_ARRAY( o ) \
int o ## _length; \
o ## _length = Wosize_val( o ); \
int c_ ## o[o ## _length]; \
for ( i = 0; i < ( o ## _length ); i++ ) { ( c_ ## o )[i] = Int_val( Field( ( o ), i ) ); }
// Copy an int array, o, of n element to the C array c
#define INIT_INT_ARRAYS( o ) \
int o ## _length, o ## _inner; \
o ## _length = Wosize_val( o ); \
int *c_ ## o[o ## _length]; \
for ( i = 0; i < ( o ## _length ); i++ ) { \
INIT_INT_ARRAY( o ## _subarray ); \
( c_ ## o )[i] = c_ ## o ## _subarray; \
}
int lor_ml_list( value list, ML_VARIANT_FUNC variant_f )
{
CAMLparam1( list );
int result;
result = 0;
while ( list != Val_emptylist )
{
// Accumulate the elements of the list
result = result | variant_f( Int_val( Field( list, 0 ) ) );
// Point to the tail of the list for the next loop
list = Field( list, 1 );
}
CAMLreturn( result );
}
value ml_plparseopts( value argv, value parse_method )
{
CAMLparam2( argv, parse_method );
int i;
PLINT result;
int combined_parse_method;
// Make a copy of the command line argument strings
INIT_NC_STRING_ARRAY( argv )
// OR the elements of the parse_method list together
combined_parse_method = lor_ml_list( parse_method, translate_parse_option );
result = plparseopts( &argv_length, c_argv, combined_parse_method );
if ( result != 0 )
{
char exception_message[MAX_EXCEPTION_MESSAGE_LENGTH];
sprintf( exception_message, "Invalid arguments in plparseopts, error %d", result );
caml_invalid_argument( exception_message );
}
CAMLreturn( Val_unit );
}
value ml_plstripc( value xspec, value yspec, value xmin, value xmax, value xjump,
value ymin, value ymax, value xlpos, value ylpos, value y_ascl,
value acc, value colbox, value collab, value colline, value styline,
value legline, value labx, value laby, value labtop )
{
// Function parameters
CAMLparam5( xspec, yspec, xmin, xmax, xjump );
CAMLxparam5( ymin, ymax, xlpos, ylpos, y_ascl );
CAMLxparam5( acc, colbox, collab, colline, styline );
CAMLxparam4( legline, labx, laby, labtop );
// Line attribute array copies
int colline_copy[4];
int styline_copy[4];
const char* legend_copy[4];
int i;
for ( i = 0; i < 4; i++ )
{
colline_copy[i] = Int_val( Field( colline, i ) );
styline_copy[i] = Int_val( Field( styline, i ) );
legend_copy[i] = String_val( Field( legline, i ) );
}
// The returned value
int id;
plstripc( &id, String_val( xspec ), String_val( yspec ),
Double_val( xmin ), Double_val( xmax ),
Double_val( xjump ), Double_val( ymin ), Double_val( ymax ),
Double_val( xlpos ), Double_val( ylpos ), Bool_val( y_ascl ),
Bool_val( acc ), Int_val( colbox ), Int_val( collab ),
colline_copy, styline_copy, legend_copy,
String_val( labx ), String_val( laby ), String_val( labtop ) );
// Make me do something!
CAMLreturn( Val_int( id ) );
}
value ml_plstripc_byte( value* argv, int argn )
{
return ml_plstripc( argv[0], argv[1], argv[2], argv[3], argv[4],
argv[5], argv[6], argv[7], argv[8], argv[9],
argv[10], argv[11], argv[12], argv[13], argv[14],
argv[15], argv[16], argv[17], argv[18] );
}
int translate_legend_option( int legend_option )
{
int translated_option;
switch ( legend_option )
{
case 0: translated_option = PL_LEGEND_NULL; break;
case 1: translated_option = PL_LEGEND_NONE; break;
case 2: translated_option = PL_LEGEND_COLOR_BOX; break;
case 3: translated_option = PL_LEGEND_LINE; break;
case 4: translated_option = PL_LEGEND_SYMBOL; break;
case 5: translated_option = PL_LEGEND_TEXT_LEFT; break;
case 6: translated_option = PL_LEGEND_BACKGROUND; break;
case 7: translated_option = PL_LEGEND_BOUNDING_BOX; break;
case 8: translated_option = PL_LEGEND_ROW_MAJOR; break;
default: translated_option = -1;
}
return translated_option;
}
int translate_colorbar_option( int colorbar_option )
{
int translated_option;
switch ( colorbar_option )
{
case 0: translated_option = PL_COLORBAR_NULL; break;
case 1: translated_option = PL_COLORBAR_LABEL_LEFT; break;
case 2: translated_option = PL_COLORBAR_LABEL_RIGHT; break;
case 3: translated_option = PL_COLORBAR_LABEL_TOP; break;
case 4: translated_option = PL_COLORBAR_LABEL_BOTTOM; break;
case 5: translated_option = PL_COLORBAR_IMAGE; break;
case 6: translated_option = PL_COLORBAR_SHADE; break;
case 7: translated_option = PL_COLORBAR_GRADIENT; break;
case 8: translated_option = PL_COLORBAR_CAP_NONE; break;
case 9: translated_option = PL_COLORBAR_CAP_LOW; break;
case 10: translated_option = PL_COLORBAR_CAP_HIGH; break;
case 11: translated_option = PL_COLORBAR_SHADE_LABEL; break;
case 12: translated_option = PL_COLORBAR_ORIENT_RIGHT; break;
case 13: translated_option = PL_COLORBAR_ORIENT_TOP; break;
case 14: translated_option = PL_COLORBAR_ORIENT_LEFT; break;
case 15: translated_option = PL_COLORBAR_ORIENT_BOTTOM; break;
case 16: translated_option = PL_COLORBAR_BACKGROUND; break;
case 17: translated_option = PL_COLORBAR_BOUNDING_BOX; break;
default: translated_option = -1;
}
return translated_option;
}
int translate_position_option( int position_option )
{
int translated_option;
switch ( position_option )
{
case 0: translated_option = PL_POSITION_NULL; break;
case 1: translated_option = PL_POSITION_LEFT; break;
case 2: translated_option = PL_POSITION_RIGHT; break;
case 3: translated_option = PL_POSITION_TOP; break;
case 4: translated_option = PL_POSITION_BOTTOM; break;
case 5: translated_option = PL_POSITION_INSIDE; break;
case 6: translated_option = PL_POSITION_OUTSIDE; break;
case 7: translated_option = PL_POSITION_VIEWPORT; break;
case 8: translated_option = PL_POSITION_SUBPAGE; break;
default: translated_option = -1;
}
return translated_option;
}
value ml_pllegend( value opt, value position, value x, value y, value plot_width,
value bg_color,
value bb_color, value bb_style,
value nrow, value ncolumn,
value opt_array,
value text_offset, value text_scale, value text_spacing,
value text_justification, value text_colors, value text,
value box_colors, value box_patterns, value box_scales,
value box_line_widths,
value line_colors, value line_styles, value line_widths,
value symbol_colors, value symbol_scales,
value symbol_numbers, value symbols )
{
CAMLparam5( position, opt, x, y, plot_width );
CAMLxparam5( bg_color, bb_color, bb_style, nrow, ncolumn );
CAMLxparam5( opt_array, text_offset, text_scale, text_spacing, text_justification );
CAMLxparam5( text_colors, text, box_colors, box_patterns, box_scales );
CAMLxparam5( box_line_widths, line_colors, line_styles, line_widths, symbol_colors );
CAMLxparam3( symbol_scales, symbol_numbers, symbols );
CAMLlocal1( result );
result = caml_alloc( 2, 0 );
// Counter
int i;
// General legend options
int c_position, c_opt;
// Number of legend entries
int n_legend;
n_legend = Wosize_val( opt_array );
// Options for each legend entry
int c_opt_array[n_legend];
// Assume that the dimensions all line up on the OCaml side, so we don't
// need to do any further dimension checks.
// Define and initialize all of the C arrays to pass in to pllegend
INIT_STRING_ARRAY( text )
INIT_INT_ARRAY( text_colors )
INIT_INT_ARRAY( box_colors )
INIT_INT_ARRAY( box_patterns )
INIT_INT_ARRAY( line_colors )
INIT_INT_ARRAY( line_styles )
INIT_INT_ARRAY( symbol_colors )
INIT_INT_ARRAY( symbol_numbers )
INIT_STRING_ARRAY( symbols )
// Translate the legend configuration options
c_opt = lor_ml_list( opt, translate_legend_option );
c_position = lor_ml_list( position, translate_position_option );
for ( i = 0; i < n_legend; i++ )
{
c_opt_array[i] =
lor_ml_list( Field( opt_array, i ), translate_legend_option );
}
// The returned width and height of the legend
PLFLT width, height;
pllegend( &width, &height, c_opt, c_position, Double_val( x ), Double_val( y ),
Double_val( plot_width ), Int_val( bg_color ),
Int_val( bb_color ), Int_val( bb_style ),
Int_val( nrow ), Int_val( ncolumn ),
n_legend, c_opt_array,
Double_val( text_offset ), Double_val( text_scale ),
Double_val( text_spacing ),
Double_val( text_justification ),
c_text_colors, c_text,
c_box_colors, c_box_patterns, (double *) box_scales,
(double *) box_line_widths,
c_line_colors, c_line_styles, (double *) line_widths,
c_symbol_colors, (double *) symbol_scales, c_symbol_numbers,
c_symbols );
// Return a tuple with the legend's size
Store_field( result, 0, caml_copy_double( width ) );
Store_field( result, 1, caml_copy_double( height ) );
CAMLreturn( result );
}
value ml_pllegend_byte( value* argv, int argn )
{
return ml_pllegend( argv[0], argv[1], argv[2], argv[3], argv[4],
argv[5], argv[6], argv[7], argv[8], argv[9],
argv[10], argv[11], argv[12], argv[13], argv[14],
argv[15], argv[16], argv[17], argv[18], argv[19],
argv[20], argv[21], argv[22], argv[23], argv[24],
argv[25], argv[26], argv[27] );
}
value ml_plcolorbar( value opt, value position, value x, value y,
value x_length, value y_length,
value bg_color, value bb_color, value bb_style,
value low_cap_color, value high_cap_color,
value cont_color, value cont_width,
value label_opts, value label,
value axis_opts,
value ticks, value sub_ticks,
value values )
{
CAMLparam5( opt, position, x, y, x_length );
CAMLxparam5( y_length, bg_color, bb_color, bb_style, low_cap_color );
CAMLxparam5( high_cap_color, cont_color, cont_width, label_opts, label );
CAMLxparam4( axis_opts, ticks, sub_ticks, values );
CAMLlocal1( result );
result = caml_alloc( 2, 0 );
// Counter
int i;
// General colorbar options
int c_opt, c_position;
// Number of labels
int n_labels;
n_labels = Wosize_val( label_opts );
// Number of axes and value ranges
int n_axes;
n_axes = Wosize_val( axis_opts );
// Translate configuration options
c_opt = lor_ml_list( opt, translate_colorbar_option );
c_position = lor_ml_list( position, translate_position_option );
// Assume that the dimensions all line up on the OCaml side, so we don't
// need to do any further dimension checks.
// Define and initialize all of the C arrays to pass into plcolorbar
INIT_STRING_ARRAY( label )
INIT_STRING_ARRAY( axis_opts )
INIT_INT_ARRAY( sub_ticks );
// Label options
int c_label_opts[ n_labels ];
for ( i = 0; i < n_labels; i++ )
{
c_label_opts[i] = lor_ml_list( Field( label_opts, i ), translate_colorbar_option );
}
// Copy the axis/range values
double **c_values;
int n_values[ n_axes ];
c_values = malloc( n_axes * sizeof ( double * ) );
// TODO: Add allocation failure check
for ( i = 0; i < n_axes; i++ )
{
c_values[i] = (double *) Field( values, i );
n_values[i] = Wosize_val( Field( values, i ) ) / Double_wosize;
}
// Return values
PLFLT width, height;
plcolorbar( &width, &height,
c_opt, c_position, Double_val( x ), Double_val( y ),
Double_val( x_length ), Double_val( y_length ),
Int_val( bg_color ), Int_val( bb_color ), Int_val( bb_style ),
Double_val( low_cap_color ), Double_val( high_cap_color ),
Int_val( cont_color ), Double_val( cont_width ),
n_labels, c_label_opts, c_label,
n_axes, c_axis_opts,
(double *) ticks, c_sub_ticks,
n_values, (const PLFLT * const *) c_values );
// Return a tuple with the colorbar's size
Store_field( result, 0, caml_copy_double( width ) );
Store_field( result, 1, caml_copy_double( height ) );
CAMLreturn( result );
}
value ml_plcolorbar_byte( value *argv, int argn )
{
return ml_plcolorbar( argv[0], argv[1], argv[2], argv[3], argv[4],
argv[5], argv[6], argv[7], argv[8], argv[9],
argv[10], argv[11], argv[12], argv[13], argv[14],
argv[15], argv[16], argv[17], argv[18] );
}
// pltr* function implementations
void ml_pltr0( double x, double y, double* tx, double* ty )
{
pltr0( x, y, tx, ty, NULL );
}
value ml_pltr1( value xg, value yg, value x, value y )
{
CAMLparam4( xg, yg, x, y );
CAMLlocal1( tx_ty );
tx_ty = caml_alloc( 2, 0 );
double tx;
double ty;
PLcGrid grid;
grid.xg = (double *) xg;
grid.yg = (double *) yg;
grid.nx = Wosize_val( xg ) / Double_wosize;
grid.ny = Wosize_val( yg ) / Double_wosize;
pltr1( Double_val( x ), Double_val( y ), &tx, &ty, ( PLPointer ) & grid );
// Allocate a tuple and return it with the results
Store_field( tx_ty, 0, caml_copy_double( tx ) );
Store_field( tx_ty, 1, caml_copy_double( ty ) );
CAMLreturn( tx_ty );
}
value ml_pltr2( value xg, value yg, value x, value y )
{
CAMLparam4( xg, yg, x, y );
CAMLlocal1( tx_ty );
tx_ty = caml_alloc( 2, 0 );
double ** c_xg;
double ** c_yg;
int i;
int length1;
int length2;
PLcGrid2 grid;
double tx;
double ty;
// TODO: As of now, you will probably get a segfault of the xg and yg
// dimensions don't match up properly.
// Build the grid.
// Length of "outer" array
length1 = Wosize_val( xg );
// Length of the "inner" arrays
length2 = Wosize_val( Field( xg, 0 ) ) / Double_wosize;
c_xg = malloc( length1 * sizeof ( double* ) );
for ( i = 0; i < length1; i++ )
{
c_xg[i] = (double *) Field( xg, i );
}
c_yg = malloc( length1 * sizeof ( double* ) );
for ( i = 0; i < length1; i++ )
{
c_yg[i] = (double *) Field( yg, i );
}
grid.xg = c_xg;
grid.yg = c_yg;
grid.nx = length1;
grid.ny = length2;
pltr2( Double_val( x ), Double_val( y ), &tx, &ty, ( PLPointer ) & grid );
// Clean up
free( c_xg );
free( c_yg );
// Allocate a tuple and return it with the results
Store_field( tx_ty, 0, caml_copy_double( tx ) );
Store_field( tx_ty, 1, caml_copy_double( ty ) );
CAMLreturn( tx_ty );
}
// XXX Non-core functions follow XXX
//*
// The following functions are here for (my?) convenience. As far as I can
// tell, they are not defined in the core PLplot library.
//
// Get the current color map 0 color index
int plg_current_col0( void )
{
return plsc->icol0;
}
// Get the current color map 1 color index
PLFLT plg_current_col1( void )
{
return plsc->icol1;
}
// Get the current pen width. TODO: Remove this, as I think this information
// can be retrieved from another proper PLplot function.
PLFLT plgwidth( void )
{
return plsc->width;
}
// Get the current character (text) height in mm. TODO: Remove this, as I
// think this information can be retrieved from another proper PLplot
// function
PLFLT plgchrht( void )
{
return plsc->chrht;
}