Fourier transform of first function: n Real(n) Imag.(n) Real(N-n) Imag.(N-n) 0 0.000000 0.000000 0.000000 0.000000 1 0.000000 0.000000 0.000000 -0.000000 2 0.000000 0.000000 0.000000 -0.000000 3 0.000000 0.000000 0.000000 -0.000000 4 13.656855 -13.656855 13.656855 13.656855 5 0.000000 0.000000 0.000000 -0.000000 6 0.000000 0.000000 0.000000 -0.000000 7 0.000000 0.000000 0.000000 -0.000000 8 0.000000 0.000000 0.000000 -0.000000 9 0.000000 0.000000 0.000000 -0.000000 10 0.000000 0.000000 0.000000 -0.000000 11 0.000000 0.000000 0.000000 -0.000000 12 2.343146 2.343146 2.343146 -2.343146 13 0.000000 0.000000 0.000000 -0.000000 14 0.000000 0.000000 0.000000 -0.000000 15 0.000000 0.000000 0.000000 -0.000000 16 0.000000 -0.000000 0.000000 -0.000000 press RETURN to continue ... Fourier transform of second function: n Real(n) Imag.(n) Real(N-n) Imag.(N-n) 0 0.000000 0.000000 0.000000 0.000000 1 0.000000 0.000000 0.000000 -0.000000 2 0.000000 0.000000 0.000000 -0.000000 3 0.000000 0.000000 0.000000 -0.000000 4 13.656855 13.656855 13.656855 -13.656855 5 0.000000 0.000000 0.000000 -0.000000 6 0.000000 0.000000 0.000000 -0.000000 7 0.000000 0.000000 0.000000 -0.000000 8 0.000000 0.000000 0.000000 -0.000000 9 0.000000 0.000000 0.000000 -0.000000 10 0.000000 0.000000 0.000000 -0.000000 11 0.000000 0.000000 0.000000 -0.000000 12 2.343146 -2.343146 2.343146 2.343146 13 0.000000 0.000000 0.000000 -0.000000 14 0.000000 0.000000 0.000000 -0.000000 15 0.000000 0.000000 0.000000 -0.000000 16 0.000000 -0.000000 0.000000 -0.000000 press RETURN to continue ... Inverted transform = first function: n Real(n) Imag.(n) Real(N-n) Imag.(N-n) 0 32.000000 0.000000 32.000000 0.000000 1 0.000000 0.000000 32.000000 0.000000 2 -32.000000 0.000000 32.000000 0.000000 3 -32.000000 0.000000 0.000000 0.000000 4 -32.000000 0.000000 -32.000000 0.000000 5 0.000000 0.000000 -32.000000 0.000000 6 32.000000 0.000000 -32.000000 0.000000 7 32.000000 0.000000 0.000000 0.000000 8 32.000000 0.000000 32.000000 0.000000 9 0.000000 0.000000 32.000000 0.000000 10 -32.000000 0.000000 32.000000 0.000000 11 -32.000000 0.000000 0.000000 0.000000 12 -32.000000 0.000000 -32.000000 0.000000 13 0.000000 0.000000 -32.000000 0.000000 14 32.000000 0.000000 -32.000000 0.000000 15 32.000000 0.000000 0.000000 0.000000 16 32.000000 0.000000 32.000000 0.000000 press RETURN to continue ... Inverted transform = second function: n Real(n) Imag.(n) Real(N-n) Imag.(N-n) 0 32.000000 0.000000 32.000000 0.000000 1 32.000000 0.000000 0.000000 0.000000 2 32.000000 0.000000 -32.000000 0.000000 3 0.000000 0.000000 -32.000000 0.000000 4 -32.000000 0.000000 -32.000000 0.000000 5 -32.000000 0.000000 0.000000 0.000000 6 -32.000000 0.000000 32.000000 0.000000 7 0.000000 0.000000 32.000000 0.000000 8 32.000000 0.000000 32.000000 0.000000 9 32.000000 0.000000 0.000000 0.000000 10 32.000000 0.000000 -32.000000 0.000000 11 0.000000 0.000000 -32.000000 0.000000 12 -32.000000 0.000000 -32.000000 0.000000 13 -32.000000 0.000000 0.000000 0.000000 14 -32.000000 0.000000 32.000000 0.000000 15 0.000000 0.000000 32.000000 0.000000 16 32.000000 0.000000 32.000000 0.000000 press RETURN to continue ...