C> \brief \b SGETRF VARIANT: iterative version of Sivan Toledo's recursive LU algorithm
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE SGETRF( M, N, A, LDA, IPIV, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INFO, LDA, M, N
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       REAL               A( LDA, * )
*       ..
*
*  Purpose
*  =======
*
C>\details \b Purpose:
C>\verbatim
C>
C> SGETRF computes an LU factorization of a general M-by-N matrix A
C> using partial pivoting with row interchanges.
C>
C> The factorization has the form
C>    A = P * L * U
C> where P is a permutation matrix, L is lower triangular with unit
C> diagonal elements (lower trapezoidal if m > n), and U is upper
C> triangular (upper trapezoidal if m < n).
C>
C> This code implements an iterative version of Sivan Toledo's recursive
C> LU algorithm[1].  For square matrices, this iterative versions should
C> be within a factor of two of the optimum number of memory transfers.
C>
C> The pattern is as follows, with the large blocks of U being updated
C> in one call to STRSM, and the dotted lines denoting sections that
C> have had all pending permutations applied:
C>
C>  1 2 3 4 5 6 7 8
C> +-+-+---+-------+------
C> | |1|   |       |
C> |.+-+ 2 |       |
C> | | |   |       |
C> |.|.+-+-+   4   |
C> | | | |1|       |
C> | | |.+-+       |
C> | | | | |       |
C> |.|.|.|.+-+-+---+  8
C> | | | | | |1|   |
C> | | | | |.+-+ 2 |
C> | | | | | | |   |
C> | | | | |.|.+-+-+
C> | | | | | | | |1|
C> | | | | | | |.+-+
C> | | | | | | | | |
C> |.|.|.|.|.|.|.|.+-----
C> | | | | | | | | |
C>
C> The 1-2-1-4-1-2-1-8-... pattern is the position of the last 1 bit in
C> the binary expansion of the current column.  Each Schur update is
C> applied as soon as the necessary portion of U is available.
C>
C> [1] Toledo, S. 1997. Locality of Reference in LU Decomposition with
C> Partial Pivoting. SIAM J. Matrix Anal. Appl. 18, 4 (Oct. 1997),
C> 1065-1081. http://dx.doi.org/10.1137/S0895479896297744
C>
C>\endverbatim
*
*  Arguments:
*  ==========
*
C> \param[in] M
C> \verbatim
C>          M is INTEGER
C>          The number of rows of the matrix A.  M >= 0.
C> \endverbatim
C>
C> \param[in] N
C> \verbatim
C>          N is INTEGER
C>          The number of columns of the matrix A.  N >= 0.
C> \endverbatim
C>
C> \param[in,out] A
C> \verbatim
C>          A is REAL array, dimension (LDA,N)
C>          On entry, the M-by-N matrix to be factored.
C>          On exit, the factors L and U from the factorization
C>          A = P*L*U; the unit diagonal elements of L are not stored.
C> \endverbatim
C>
C> \param[in] LDA
C> \verbatim
C>          LDA is INTEGER
C>          The leading dimension of the array A.  LDA >= max(1,M).
C> \endverbatim
C>
C> \param[out] IPIV
C> \verbatim
C>          IPIV is INTEGER array, dimension (min(M,N))
C>          The pivot indices; for 1 <= i <= min(M,N), row i of the
C>          matrix was interchanged with row IPIV(i).
C> \endverbatim
C>
C> \param[out] INFO
C> \verbatim
C>          INFO is INTEGER
C>          = 0:  successful exit
C>          < 0:  if INFO = -i, the i-th argument had an illegal value
C>          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization
C>                has been completed, but the factor U is exactly
C>                singular, and division by zero will occur if it is used
C>                to solve a system of equations.
C> \endverbatim
C>
*
*  Authors:
*  ========
*
C> \author Univ. of Tennessee
C> \author Univ. of California Berkeley
C> \author Univ. of Colorado Denver
C> \author NAG Ltd.
*
C> \date December 2016
*
C> \ingroup variantsGEcomputational
*
*  =====================================================================
      SUBROUTINE SGETRF( M, N, A, LDA, IPIV, INFO )
*
*  -- LAPACK computational routine (version 3.X) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      REAL               A( LDA, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO, NEGONE
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
      PARAMETER          ( NEGONE = -1.0E+0 )
*     ..
*     .. Local Scalars ..
      REAL               SFMIN, TMP
      INTEGER            I, J, JP, NSTEP, NTOPIV, NPIVED, KAHEAD
      INTEGER            KSTART, IPIVSTART, JPIVSTART, KCOLS
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      INTEGER            ISAMAX
      LOGICAL            SISNAN
      EXTERNAL           SLAMCH, ISAMAX, SISNAN
*     ..
*     .. External Subroutines ..
      EXTERNAL           STRSM, SSCAL, XERBLA, SLASWP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, IAND
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SGETRF', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 )
     $   RETURN
*
*     Compute machine safe minimum
*
      SFMIN = SLAMCH( 'S' )
*
      NSTEP = MIN( M, N )
      DO J = 1, NSTEP
         KAHEAD = IAND( J, -J )
         KSTART = J + 1 - KAHEAD
         KCOLS = MIN( KAHEAD, M-J )
*
*        Find pivot.
*
         JP = J - 1 + ISAMAX( M-J+1, A( J, J ), 1 )
         IPIV( J ) = JP

!        Permute just this column.
         IF (JP .NE. J) THEN
            TMP = A( J, J )
            A( J, J ) = A( JP, J )
            A( JP, J ) = TMP
         END IF

!        Apply pending permutations to L
         NTOPIV = 1
         IPIVSTART = J
         JPIVSTART = J - NTOPIV
         DO WHILE ( NTOPIV .LT. KAHEAD )
            CALL SLASWP( NTOPIV, A( 1, JPIVSTART ), LDA, IPIVSTART, J,
     $           IPIV, 1 )
            IPIVSTART = IPIVSTART - NTOPIV;
            NTOPIV = NTOPIV * 2;
            JPIVSTART = JPIVSTART - NTOPIV;
         END DO

!        Permute U block to match L
         CALL SLASWP( KCOLS, A( 1,J+1 ), LDA, KSTART, J, IPIV, 1 )

!        Factor the current column
         IF( A( J, J ).NE.ZERO .AND. .NOT.SISNAN( A( J, J ) ) ) THEN
               IF( ABS(A( J, J )) .GE. SFMIN ) THEN
                  CALL SSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 )
               ELSE
                 DO I = 1, M-J
                    A( J+I, J ) = A( J+I, J ) / A( J, J )
                 END DO
               END IF
         ELSE IF( A( J,J ) .EQ. ZERO .AND. INFO .EQ. 0 ) THEN
            INFO = J
         END IF

!        Solve for U block.
         CALL STRSM( 'Left', 'Lower', 'No transpose', 'Unit', KAHEAD,
     $        KCOLS, ONE, A( KSTART, KSTART ), LDA,
     $        A( KSTART, J+1 ), LDA )
!        Schur complement.
         CALL SGEMM( 'No transpose', 'No transpose', M-J,
     $        KCOLS, KAHEAD, NEGONE, A( J+1, KSTART ), LDA,
     $        A( KSTART, J+1 ), LDA, ONE, A( J+1, J+1 ), LDA )
      END DO

!     Handle pivot permutations on the way out of the recursion
      NPIVED = IAND( NSTEP, -NSTEP )
      J = NSTEP - NPIVED
      DO WHILE ( J .GT. 0 )
         NTOPIV = IAND( J, -J )
         CALL SLASWP( NTOPIV, A( 1, J-NTOPIV+1 ), LDA, J+1, NSTEP,
     $        IPIV, 1 )
         J = J - NTOPIV
      END DO

!     If short and wide, handle the rest of the columns.
      IF ( M .LT. N ) THEN
         CALL SLASWP( N-M, A( 1, M+KCOLS+1 ), LDA, 1, M, IPIV, 1 )
         CALL STRSM( 'Left', 'Lower', 'No transpose', 'Unit', M,
     $        N-M, ONE, A, LDA, A( 1,M+KCOLS+1 ), LDA )
      END IF

      RETURN
*
*     End of SGETRF
*
      END