/* * Copyright (c) 2003, 2007-14 Matteo Frigo * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology * * 128-bit AVX support by Erik Lindahl, 2015. * Erik Lindahl hereby places his modifications in the public domain. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD) #error "AVX only works in single or double precision" #endif #ifdef FFTW_SINGLE # define DS(d,s) s /* single-precision option */ # define SUFF(name) name ## s #else # define DS(d,s) d /* double-precision option */ # define SUFF(name) name ## d #endif #define SIMD_SUFFIX _avx_128_fma /* for renaming */ #define VL DS(1,2) /* SIMD vector length, in term of complex numbers */ #define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2)) #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK #ifdef _MSC_VER #ifndef inline #define inline __inline #endif #endif #include #ifdef _MSC_VER # include #elif defined (__GNUC__) # include #endif #if !(defined(__AVX__) && defined(__FMA4__)) /* sanity check */ #error "compiling simd-avx-128-fma.h without -mavx or -mfma4" #endif typedef DS(__m128d,__m128) V; #define VADD SUFF(_mm_add_p) #define VSUB SUFF(_mm_sub_p) #define VMUL SUFF(_mm_mul_p) #define VXOR SUFF(_mm_xor_p) #define SHUF SUFF(_mm_shuffle_p) #define VPERM1 SUFF(_mm_permute_p) #define UNPCKL SUFF(_mm_unpacklo_p) #define UNPCKH SUFF(_mm_unpackhi_p) #define SHUFVALS(fp0,fp1,fp2,fp3) \ (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0))) #define VDUPL(x) DS(_mm_permute_pd(x,0), _mm_moveldup_ps(x)) #define VDUPH(x) DS(_mm_permute_pd(x,3), _mm_movehdup_ps(x)) #define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr)) #define LOADL(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr)) #define STOREH(a, v) DS(_mm_storeh_pd(a, v), _mm_storeh_pi((__m64 *)(a), v)) #define STOREL(a, v) DS(_mm_storel_pd(a, v), _mm_storel_pi((__m64 *)(a), v)) #define VLIT(x0, x1) DS(_mm_set_pd(x0, x1), _mm_set_ps(x0, x1, x0, x1)) #define DVK(var, val) V var = VLIT(val, val) #define LDK(x) x static inline V LDA(const R *x, INT ivs, const R *aligned_like) { (void)aligned_like; /* UNUSED */ (void)ivs; /* UNUSED */ return *(const V *)x; } static inline void STA(R *x, V v, INT ovs, const R *aligned_like) { (void)aligned_like; /* UNUSED */ (void)ovs; /* UNUSED */ *(V *)x = v; } #ifdef FFTW_SINGLE static inline V LD(const R *x, INT ivs, const R *aligned_like) { V var; #if defined(__ICC) || (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ > 8) var = LOADL(x, SUFF(_mm_undefined_p)()); var = LOADH(x + ivs, var); #else var = LOADL(x, var); var = LOADH(x + ivs, var); #endif return var; } # ifdef _MSC_VER # pragma warning(default : 4700) # pragma runtime_checks("u", restore) # endif static inline void ST(R *x, V v, INT ovs, const R *aligned_like) { (void)aligned_like; /* UNUSED */ /* WARNING: the extra_iter hack depends upon STOREL occurring after STOREH */ STOREH(x + ovs, v); STOREL(x, v); } #else /* ! FFTW_SINGLE */ # define LD LDA # define ST STA #endif #define STM2 DS(STA,ST) #define STN2(x, v0, v1, ovs) /* nop */ #ifdef FFTW_SINGLE # define STM4(x, v, ovs, aligned_like) /* no-op */ /* STN4 is a macro, not a function, thanks to Visual C++ developers deciding "it would be infrequent that people would want to pass more than 3 [__m128 parameters] by value." 3 parameters ought to be enough for anybody. */ # define STN4(x, v0, v1, v2, v3, ovs) \ { \ V xxx0, xxx1, xxx2, xxx3; \ xxx0 = UNPCKL(v0, v2); \ xxx1 = UNPCKH(v0, v2); \ xxx2 = UNPCKL(v1, v3); \ xxx3 = UNPCKH(v1, v3); \ STA(x, UNPCKL(xxx0, xxx2), 0, 0); \ STA(x + ovs, UNPCKH(xxx0, xxx2), 0, 0); \ STA(x + 2 * ovs, UNPCKL(xxx1, xxx3), 0, 0); \ STA(x + 3 * ovs, UNPCKH(xxx1, xxx3), 0, 0); \ } #else /* !FFTW_SINGLE */ static inline void STM4(R *x, V v, INT ovs, const R *aligned_like) { (void)aligned_like; /* UNUSED */ STOREL(x, v); STOREH(x + ovs, v); } # define STN4(x, v0, v1, v2, v3, ovs) /* nothing */ #endif static inline V FLIP_RI(V x) { return VPERM1(x, DS(1, SHUFVALS(1, 0, 3, 2))); } static inline V VCONJ(V x) { V pmpm = VLIT(-0.0, 0.0); return VXOR(pmpm, x); } static inline V VBYI(V x) { x = VCONJ(x); x = FLIP_RI(x); return x; } /* FMA support */ #define VFMA(a, b, c) SUFF(_mm_macc_p)(a,b,c) #define VFNMS(a, b, c) SUFF(_mm_nmacc_p)(a,b,c) #define VFMS(a, b, c) SUFF(_mm_msub_p)(a,b,c) #define VFMAI(b, c) SUFF(_mm_addsub_p)(c,FLIP_RI(b)) #define VFNMSI(b, c) VSUB(c, VBYI(b)) #define VFMACONJ(b,c) VADD(VCONJ(b),c) #define VFMSCONJ(b,c) VSUB(VCONJ(b),c) #define VFNMSCONJ(b,c) SUFF(_mm_addsub_p)(c,b) static inline V VZMUL(V tx, V sr) { V tr = VDUPL(tx); V ti = VDUPH(tx); tr = VMUL(tr, sr); ti = VMUL(ti, FLIP_RI(sr)); return SUFF(_mm_addsub_p)(tr,ti); } static inline V VZMULJ(V tx, V sr) { V tr = VDUPL(tx); V ti = VDUPH(tx); tr = VMUL(tr, sr); sr = VBYI(sr); return VFNMS(ti, sr, tr); } static inline V VZMULI(V tx, V sr) { V tr = VDUPL(tx); V ti = VDUPH(tx); ti = VMUL(ti, sr); sr = VBYI(sr); return VFMS(tr, sr, ti); } static inline V VZMULIJ(V tx, V sr) { V tr = VDUPL(tx); V ti = VDUPH(tx); ti = VMUL(ti, sr); tr = VMUL(tr, FLIP_RI(sr)); return SUFF(_mm_addsub_p)(ti,tr); } /* twiddle storage #1: compact, slower */ #ifdef FFTW_SINGLE # define VTW1(v,x) \ {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x} static inline V BYTW1(const R *t, V sr) { const V *twp = (const V *)t; V tx = twp[0]; V tr = UNPCKL(tx, tx); V ti = UNPCKH(tx, tx); tr = VMUL(tr, sr); ti = VMUL(ti, FLIP_RI(sr)); return SUFF(_mm_addsub_p)(tr,ti); } static inline V BYTWJ1(const R *t, V sr) { const V *twp = (const V *)t; V tx = twp[0]; V tr = UNPCKL(tx, tx); V ti = UNPCKH(tx, tx); tr = VMUL(tr, sr); sr = VBYI(sr); return VFNMS(ti, sr, tr); } #else /* !FFTW_SINGLE */ # define VTW1(v,x) {TW_CEXP, v, x} static inline V BYTW1(const R *t, V sr) { V tx = LD(t, 1, t); return VZMUL(tx, sr); } static inline V BYTWJ1(const R *t, V sr) { V tx = LD(t, 1, t); return VZMULJ(tx, sr); } #endif #define TWVL1 (VL) /* twiddle storage #2: twice the space, faster (when in cache) */ #ifdef FFTW_SINGLE # define VTW2(v,x) \ {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x} #else /* !FFTW_SINGLE */ # define VTW2(v,x) \ {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x} #endif #define TWVL2 (2 * VL) static inline V BYTW2(const R *t, V sr) { const V *twp = (const V *)t; V si = FLIP_RI(sr); V tr = twp[0], ti = twp[1]; return VFMA(tr, sr, VMUL(ti, si)); } static inline V BYTWJ2(const R *t, V sr) { const V *twp = (const V *)t; V si = FLIP_RI(sr); V tr = twp[0], ti = twp[1]; return VFNMS(ti, si, VMUL(tr, sr)); } /* twiddle storage #3 */ #ifdef FFTW_SINGLE # define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x} # define TWVL3 (VL) #else # define VTW3(v,x) VTW1(v,x) # define TWVL3 TWVL1 #endif /* twiddle storage for split arrays */ #ifdef FFTW_SINGLE # define VTWS(v,x) \ {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x} #else # define VTWS(v,x) \ {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x} #endif #define TWVLS (2 * VL) #define VLEAVE() /* nothing */ #include "simd-common.h"