/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Sun Oct 29 08:17:48 EDT 2017 */

#include "rdft/codelet-rdft.h"

#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)

/* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 32 -name r2cf_32 -include rdft/scalar/r2cf.h */

/*
 * This function contains 156 FP additions, 68 FP multiplications,
 * (or, 88 additions, 0 multiplications, 68 fused multiply/add),
 * 54 stack variables, 7 constants, and 64 memory accesses
 */
#include "rdft/scalar/r2cf.h"

static void r2cf_32(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
     DK(KP831469612, +0.831469612302545237078788377617905756738560812);
     DK(KP668178637, +0.668178637919298919997757686523080761552472251);
     DK(KP980785280, +0.980785280403230449126182236134239036973933731);
     DK(KP198912367, +0.198912367379658006911597622644676228597850501);
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
     DK(KP414213562, +0.414213562373095048801688724209698078569671875);
     {
	  INT i;
	  for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(128, rs), MAKE_VOLATILE_STRIDE(128, csr), MAKE_VOLATILE_STRIDE(128, csi)) {
	       E T7, T2b, Tv, T1h, Te, T2n, Ty, T1i, Tt, T2d, TF, T1l, Tm, T2c, TC;
	       E T1k, T1Z, T22, T2k, T2j, T1e, T1C, T19, T1B, T1S, T1V, T2h, T2g, TX, T1z;
	       E TS, T1y;
	       {
		    E T1, T2, T3, T4, T5, T6;
		    T1 = R0[0];
		    T2 = R0[WS(rs, 8)];
		    T3 = T1 + T2;
		    T4 = R0[WS(rs, 4)];
		    T5 = R0[WS(rs, 12)];
		    T6 = T4 + T5;
		    T7 = T3 + T6;
		    T2b = T3 - T6;
		    Tv = T1 - T2;
		    T1h = T4 - T5;
	       }
	       {
		    E Ta, Tw, Td, Tx;
		    {
			 E T8, T9, Tb, Tc;
			 T8 = R0[WS(rs, 2)];
			 T9 = R0[WS(rs, 10)];
			 Ta = T8 + T9;
			 Tw = T8 - T9;
			 Tb = R0[WS(rs, 14)];
			 Tc = R0[WS(rs, 6)];
			 Td = Tb + Tc;
			 Tx = Tb - Tc;
		    }
		    Te = Ta + Td;
		    T2n = Td - Ta;
		    Ty = Tw + Tx;
		    T1i = Tx - Tw;
	       }
	       {
		    E Tp, TD, Ts, TE;
		    {
			 E Tn, To, Tq, Tr;
			 Tn = R0[WS(rs, 15)];
			 To = R0[WS(rs, 7)];
			 Tp = Tn + To;
			 TD = Tn - To;
			 Tq = R0[WS(rs, 3)];
			 Tr = R0[WS(rs, 11)];
			 Ts = Tq + Tr;
			 TE = Tq - Tr;
		    }
		    Tt = Tp + Ts;
		    T2d = Tp - Ts;
		    TF = FMA(KP414213562, TE, TD);
		    T1l = FNMS(KP414213562, TD, TE);
	       }
	       {
		    E Ti, TA, Tl, TB;
		    {
			 E Tg, Th, Tj, Tk;
			 Tg = R0[WS(rs, 1)];
			 Th = R0[WS(rs, 9)];
			 Ti = Tg + Th;
			 TA = Tg - Th;
			 Tj = R0[WS(rs, 5)];
			 Tk = R0[WS(rs, 13)];
			 Tl = Tj + Tk;
			 TB = Tj - Tk;
		    }
		    Tm = Ti + Tl;
		    T2c = Ti - Tl;
		    TC = FNMS(KP414213562, TB, TA);
		    T1k = FMA(KP414213562, TA, TB);
	       }
	       {
		    E T11, T1X, T1c, T1Y, T14, T20, T17, T21, T1d, T18;
		    {
			 E TZ, T10, T1a, T1b;
			 TZ = R1[WS(rs, 15)];
			 T10 = R1[WS(rs, 7)];
			 T11 = TZ - T10;
			 T1X = TZ + T10;
			 T1a = R1[WS(rs, 11)];
			 T1b = R1[WS(rs, 3)];
			 T1c = T1a - T1b;
			 T1Y = T1b + T1a;
		    }
		    {
			 E T12, T13, T15, T16;
			 T12 = R1[WS(rs, 1)];
			 T13 = R1[WS(rs, 9)];
			 T14 = T12 - T13;
			 T20 = T12 + T13;
			 T15 = R1[WS(rs, 13)];
			 T16 = R1[WS(rs, 5)];
			 T17 = T15 - T16;
			 T21 = T15 + T16;
		    }
		    T1Z = T1X + T1Y;
		    T22 = T20 + T21;
		    T2k = T21 - T20;
		    T2j = T1X - T1Y;
		    T1d = T17 - T14;
		    T1e = FMA(KP707106781, T1d, T1c);
		    T1C = FNMS(KP707106781, T1d, T1c);
		    T18 = T14 + T17;
		    T19 = FMA(KP707106781, T18, T11);
		    T1B = FNMS(KP707106781, T18, T11);
	       }
	       {
		    E TK, T1Q, TV, T1R, TN, T1T, TQ, T1U, TW, TR;
		    {
			 E TI, TJ, TT, TU;
			 TI = R1[0];
			 TJ = R1[WS(rs, 8)];
			 TK = TI - TJ;
			 T1Q = TI + TJ;
			 TT = R1[WS(rs, 4)];
			 TU = R1[WS(rs, 12)];
			 TV = TT - TU;
			 T1R = TT + TU;
		    }
		    {
			 E TL, TM, TO, TP;
			 TL = R1[WS(rs, 2)];
			 TM = R1[WS(rs, 10)];
			 TN = TL - TM;
			 T1T = TL + TM;
			 TO = R1[WS(rs, 14)];
			 TP = R1[WS(rs, 6)];
			 TQ = TO - TP;
			 T1U = TO + TP;
		    }
		    T1S = T1Q + T1R;
		    T1V = T1T + T1U;
		    T2h = T1U - T1T;
		    T2g = T1Q - T1R;
		    TW = TN - TQ;
		    TX = FMA(KP707106781, TW, TV);
		    T1z = FNMS(KP707106781, TW, TV);
		    TR = TN + TQ;
		    TS = FMA(KP707106781, TR, TK);
		    T1y = FNMS(KP707106781, TR, TK);
	       }
	       {
		    E Tf, Tu, T27, T28, T29, T2a;
		    Tf = T7 + Te;
		    Tu = Tm + Tt;
		    T27 = Tf + Tu;
		    T28 = T1S + T1V;
		    T29 = T1Z + T22;
		    T2a = T28 + T29;
		    Cr[WS(csr, 8)] = Tf - Tu;
		    Ci[WS(csi, 8)] = T29 - T28;
		    Cr[WS(csr, 16)] = T27 - T2a;
		    Cr[0] = T27 + T2a;
	       }
	       {
		    E T1P, T25, T24, T26, T1W, T23;
		    T1P = T7 - Te;
		    T25 = Tt - Tm;
		    T1W = T1S - T1V;
		    T23 = T1Z - T22;
		    T24 = T1W + T23;
		    T26 = T23 - T1W;
		    Cr[WS(csr, 12)] = FNMS(KP707106781, T24, T1P);
		    Ci[WS(csi, 12)] = FMS(KP707106781, T26, T25);
		    Cr[WS(csr, 4)] = FMA(KP707106781, T24, T1P);
		    Ci[WS(csi, 4)] = FMA(KP707106781, T26, T25);
	       }
	       {
		    E T2f, T2v, T2p, T2r, T2m, T2q, T2u, T2w, T2e, T2o;
		    T2e = T2c + T2d;
		    T2f = FMA(KP707106781, T2e, T2b);
		    T2v = FNMS(KP707106781, T2e, T2b);
		    T2o = T2d - T2c;
		    T2p = FNMS(KP707106781, T2o, T2n);
		    T2r = FMA(KP707106781, T2o, T2n);
		    {
			 E T2i, T2l, T2s, T2t;
			 T2i = FMA(KP414213562, T2h, T2g);
			 T2l = FNMS(KP414213562, T2k, T2j);
			 T2m = T2i + T2l;
			 T2q = T2l - T2i;
			 T2s = FNMS(KP414213562, T2g, T2h);
			 T2t = FMA(KP414213562, T2j, T2k);
			 T2u = T2s + T2t;
			 T2w = T2t - T2s;
		    }
		    Cr[WS(csr, 14)] = FNMS(KP923879532, T2m, T2f);
		    Ci[WS(csi, 14)] = FMS(KP923879532, T2u, T2r);
		    Cr[WS(csr, 2)] = FMA(KP923879532, T2m, T2f);
		    Ci[WS(csi, 2)] = FMA(KP923879532, T2u, T2r);
		    Ci[WS(csi, 6)] = FMS(KP923879532, T2q, T2p);
		    Cr[WS(csr, 6)] = FMA(KP923879532, T2w, T2v);
		    Ci[WS(csi, 10)] = FMA(KP923879532, T2q, T2p);
		    Cr[WS(csr, 10)] = FNMS(KP923879532, T2w, T2v);
	       }
	       {
		    E TH, T1t, T1s, T1u, T1g, T1o, T1n, T1p;
		    {
			 E Tz, TG, T1q, T1r;
			 Tz = FMA(KP707106781, Ty, Tv);
			 TG = TC + TF;
			 TH = FMA(KP923879532, TG, Tz);
			 T1t = FNMS(KP923879532, TG, Tz);
			 T1q = FMA(KP198912367, T19, T1e);
			 T1r = FMA(KP198912367, TS, TX);
			 T1s = T1q - T1r;
			 T1u = T1r + T1q;
		    }
		    {
			 E TY, T1f, T1j, T1m;
			 TY = FNMS(KP198912367, TX, TS);
			 T1f = FNMS(KP198912367, T1e, T19);
			 T1g = TY + T1f;
			 T1o = T1f - TY;
			 T1j = FNMS(KP707106781, T1i, T1h);
			 T1m = T1k + T1l;
			 T1n = FNMS(KP923879532, T1m, T1j);
			 T1p = FMA(KP923879532, T1m, T1j);
		    }
		    Cr[WS(csr, 15)] = FNMS(KP980785280, T1g, TH);
		    Ci[WS(csi, 15)] = FMA(KP980785280, T1s, T1p);
		    Cr[WS(csr, 1)] = FMA(KP980785280, T1g, TH);
		    Ci[WS(csi, 1)] = FMS(KP980785280, T1s, T1p);
		    Ci[WS(csi, 7)] = FMA(KP980785280, T1o, T1n);
		    Cr[WS(csr, 7)] = FMA(KP980785280, T1u, T1t);
		    Ci[WS(csi, 9)] = FMS(KP980785280, T1o, T1n);
		    Cr[WS(csr, 9)] = FNMS(KP980785280, T1u, T1t);
	       }
	       {
		    E T1x, T1N, T1M, T1O, T1E, T1I, T1H, T1J;
		    {
			 E T1v, T1w, T1K, T1L;
			 T1v = FNMS(KP707106781, Ty, Tv);
			 T1w = T1k - T1l;
			 T1x = FMA(KP923879532, T1w, T1v);
			 T1N = FNMS(KP923879532, T1w, T1v);
			 T1K = FNMS(KP668178637, T1y, T1z);
			 T1L = FNMS(KP668178637, T1B, T1C);
			 T1M = T1K - T1L;
			 T1O = T1K + T1L;
		    }
		    {
			 E T1A, T1D, T1F, T1G;
			 T1A = FMA(KP668178637, T1z, T1y);
			 T1D = FMA(KP668178637, T1C, T1B);
			 T1E = T1A + T1D;
			 T1I = T1D - T1A;
			 T1F = FMA(KP707106781, T1i, T1h);
			 T1G = TF - TC;
			 T1H = FNMS(KP923879532, T1G, T1F);
			 T1J = FMA(KP923879532, T1G, T1F);
		    }
		    Cr[WS(csr, 13)] = FNMS(KP831469612, T1E, T1x);
		    Ci[WS(csi, 13)] = FMS(KP831469612, T1M, T1J);
		    Cr[WS(csr, 3)] = FMA(KP831469612, T1E, T1x);
		    Ci[WS(csi, 3)] = FMA(KP831469612, T1M, T1J);
		    Ci[WS(csi, 5)] = FMS(KP831469612, T1I, T1H);
		    Cr[WS(csr, 5)] = FNMS(KP831469612, T1O, T1N);
		    Ci[WS(csi, 11)] = FMA(KP831469612, T1I, T1H);
		    Cr[WS(csr, 11)] = FMA(KP831469612, T1O, T1N);
	       }
	  }
     }
}

static const kr2c_desc desc = { 32, "r2cf_32", {88, 0, 68, 0}, &GENUS };

void X(codelet_r2cf_32) (planner *p) {
     X(kr2c_register) (p, r2cf_32, &desc);
}

#else

/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 32 -name r2cf_32 -include rdft/scalar/r2cf.h */

/*
 * This function contains 156 FP additions, 42 FP multiplications,
 * (or, 140 additions, 26 multiplications, 16 fused multiply/add),
 * 54 stack variables, 7 constants, and 64 memory accesses
 */
#include "rdft/scalar/r2cf.h"

static void r2cf_32(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
     DK(KP555570233, +0.555570233019602224742830813948532874374937191);
     DK(KP831469612, +0.831469612302545237078788377617905756738560812);
     DK(KP195090322, +0.195090322016128267848284868477022240927691618);
     DK(KP980785280, +0.980785280403230449126182236134239036973933731);
     DK(KP382683432, +0.382683432365089771728459984030398866761344562);
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
     {
	  INT i;
	  for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(128, rs), MAKE_VOLATILE_STRIDE(128, csr), MAKE_VOLATILE_STRIDE(128, csi)) {
	       E T7, T2b, Tv, T1l, Te, T2o, Ty, T1k, Tt, T2d, TF, T1h, Tm, T2c, TC;
	       E T1i, T1Z, T22, T2k, T2j, T1e, T1C, T19, T1B, T1S, T1V, T2h, T2g, TX, T1z;
	       E TS, T1y;
	       {
		    E T1, T2, T3, T4, T5, T6;
		    T1 = R0[0];
		    T2 = R0[WS(rs, 8)];
		    T3 = T1 + T2;
		    T4 = R0[WS(rs, 4)];
		    T5 = R0[WS(rs, 12)];
		    T6 = T4 + T5;
		    T7 = T3 + T6;
		    T2b = T3 - T6;
		    Tv = T1 - T2;
		    T1l = T4 - T5;
	       }
	       {
		    E Ta, Tw, Td, Tx;
		    {
			 E T8, T9, Tb, Tc;
			 T8 = R0[WS(rs, 2)];
			 T9 = R0[WS(rs, 10)];
			 Ta = T8 + T9;
			 Tw = T8 - T9;
			 Tb = R0[WS(rs, 14)];
			 Tc = R0[WS(rs, 6)];
			 Td = Tb + Tc;
			 Tx = Tb - Tc;
		    }
		    Te = Ta + Td;
		    T2o = Td - Ta;
		    Ty = KP707106781 * (Tw + Tx);
		    T1k = KP707106781 * (Tx - Tw);
	       }
	       {
		    E Tp, TD, Ts, TE;
		    {
			 E Tn, To, Tq, Tr;
			 Tn = R0[WS(rs, 15)];
			 To = R0[WS(rs, 7)];
			 Tp = Tn + To;
			 TD = Tn - To;
			 Tq = R0[WS(rs, 3)];
			 Tr = R0[WS(rs, 11)];
			 Ts = Tq + Tr;
			 TE = Tq - Tr;
		    }
		    Tt = Tp + Ts;
		    T2d = Tp - Ts;
		    TF = FMA(KP923879532, TD, KP382683432 * TE);
		    T1h = FNMS(KP923879532, TE, KP382683432 * TD);
	       }
	       {
		    E Ti, TA, Tl, TB;
		    {
			 E Tg, Th, Tj, Tk;
			 Tg = R0[WS(rs, 1)];
			 Th = R0[WS(rs, 9)];
			 Ti = Tg + Th;
			 TA = Tg - Th;
			 Tj = R0[WS(rs, 5)];
			 Tk = R0[WS(rs, 13)];
			 Tl = Tj + Tk;
			 TB = Tj - Tk;
		    }
		    Tm = Ti + Tl;
		    T2c = Ti - Tl;
		    TC = FNMS(KP382683432, TB, KP923879532 * TA);
		    T1i = FMA(KP382683432, TA, KP923879532 * TB);
	       }
	       {
		    E T11, T1X, T1d, T1Y, T14, T20, T17, T21, T1a, T18;
		    {
			 E TZ, T10, T1b, T1c;
			 TZ = R1[WS(rs, 15)];
			 T10 = R1[WS(rs, 7)];
			 T11 = TZ - T10;
			 T1X = TZ + T10;
			 T1b = R1[WS(rs, 3)];
			 T1c = R1[WS(rs, 11)];
			 T1d = T1b - T1c;
			 T1Y = T1b + T1c;
		    }
		    {
			 E T12, T13, T15, T16;
			 T12 = R1[WS(rs, 1)];
			 T13 = R1[WS(rs, 9)];
			 T14 = T12 - T13;
			 T20 = T12 + T13;
			 T15 = R1[WS(rs, 13)];
			 T16 = R1[WS(rs, 5)];
			 T17 = T15 - T16;
			 T21 = T15 + T16;
		    }
		    T1Z = T1X + T1Y;
		    T22 = T20 + T21;
		    T2k = T21 - T20;
		    T2j = T1X - T1Y;
		    T1a = KP707106781 * (T17 - T14);
		    T1e = T1a - T1d;
		    T1C = T1d + T1a;
		    T18 = KP707106781 * (T14 + T17);
		    T19 = T11 + T18;
		    T1B = T11 - T18;
	       }
	       {
		    E TK, T1Q, TW, T1R, TN, T1T, TQ, T1U, TT, TR;
		    {
			 E TI, TJ, TU, TV;
			 TI = R1[0];
			 TJ = R1[WS(rs, 8)];
			 TK = TI - TJ;
			 T1Q = TI + TJ;
			 TU = R1[WS(rs, 4)];
			 TV = R1[WS(rs, 12)];
			 TW = TU - TV;
			 T1R = TU + TV;
		    }
		    {
			 E TL, TM, TO, TP;
			 TL = R1[WS(rs, 2)];
			 TM = R1[WS(rs, 10)];
			 TN = TL - TM;
			 T1T = TL + TM;
			 TO = R1[WS(rs, 14)];
			 TP = R1[WS(rs, 6)];
			 TQ = TO - TP;
			 T1U = TO + TP;
		    }
		    T1S = T1Q + T1R;
		    T1V = T1T + T1U;
		    T2h = T1U - T1T;
		    T2g = T1Q - T1R;
		    TT = KP707106781 * (TQ - TN);
		    TX = TT - TW;
		    T1z = TW + TT;
		    TR = KP707106781 * (TN + TQ);
		    TS = TK + TR;
		    T1y = TK - TR;
	       }
	       {
		    E Tf, Tu, T27, T28, T29, T2a;
		    Tf = T7 + Te;
		    Tu = Tm + Tt;
		    T27 = Tf + Tu;
		    T28 = T1S + T1V;
		    T29 = T1Z + T22;
		    T2a = T28 + T29;
		    Cr[WS(csr, 8)] = Tf - Tu;
		    Ci[WS(csi, 8)] = T29 - T28;
		    Cr[WS(csr, 16)] = T27 - T2a;
		    Cr[0] = T27 + T2a;
	       }
	       {
		    E T1P, T25, T24, T26, T1W, T23;
		    T1P = T7 - Te;
		    T25 = Tt - Tm;
		    T1W = T1S - T1V;
		    T23 = T1Z - T22;
		    T24 = KP707106781 * (T1W + T23);
		    T26 = KP707106781 * (T23 - T1W);
		    Cr[WS(csr, 12)] = T1P - T24;
		    Ci[WS(csi, 12)] = T26 - T25;
		    Cr[WS(csr, 4)] = T1P + T24;
		    Ci[WS(csi, 4)] = T25 + T26;
	       }
	       {
		    E T2f, T2v, T2p, T2r, T2m, T2q, T2u, T2w, T2e, T2n;
		    T2e = KP707106781 * (T2c + T2d);
		    T2f = T2b + T2e;
		    T2v = T2b - T2e;
		    T2n = KP707106781 * (T2d - T2c);
		    T2p = T2n - T2o;
		    T2r = T2o + T2n;
		    {
			 E T2i, T2l, T2s, T2t;
			 T2i = FMA(KP923879532, T2g, KP382683432 * T2h);
			 T2l = FNMS(KP382683432, T2k, KP923879532 * T2j);
			 T2m = T2i + T2l;
			 T2q = T2l - T2i;
			 T2s = FNMS(KP382683432, T2g, KP923879532 * T2h);
			 T2t = FMA(KP382683432, T2j, KP923879532 * T2k);
			 T2u = T2s + T2t;
			 T2w = T2t - T2s;
		    }
		    Cr[WS(csr, 14)] = T2f - T2m;
		    Ci[WS(csi, 14)] = T2u - T2r;
		    Cr[WS(csr, 2)] = T2f + T2m;
		    Ci[WS(csi, 2)] = T2r + T2u;
		    Ci[WS(csi, 6)] = T2p + T2q;
		    Cr[WS(csr, 6)] = T2v + T2w;
		    Ci[WS(csi, 10)] = T2q - T2p;
		    Cr[WS(csr, 10)] = T2v - T2w;
	       }
	       {
		    E TH, T1t, T1s, T1u, T1g, T1o, T1n, T1p;
		    {
			 E Tz, TG, T1q, T1r;
			 Tz = Tv + Ty;
			 TG = TC + TF;
			 TH = Tz + TG;
			 T1t = Tz - TG;
			 T1q = FNMS(KP195090322, TS, KP980785280 * TX);
			 T1r = FMA(KP195090322, T19, KP980785280 * T1e);
			 T1s = T1q + T1r;
			 T1u = T1r - T1q;
		    }
		    {
			 E TY, T1f, T1j, T1m;
			 TY = FMA(KP980785280, TS, KP195090322 * TX);
			 T1f = FNMS(KP195090322, T1e, KP980785280 * T19);
			 T1g = TY + T1f;
			 T1o = T1f - TY;
			 T1j = T1h - T1i;
			 T1m = T1k - T1l;
			 T1n = T1j - T1m;
			 T1p = T1m + T1j;
		    }
		    Cr[WS(csr, 15)] = TH - T1g;
		    Ci[WS(csi, 15)] = T1s - T1p;
		    Cr[WS(csr, 1)] = TH + T1g;
		    Ci[WS(csi, 1)] = T1p + T1s;
		    Ci[WS(csi, 7)] = T1n + T1o;
		    Cr[WS(csr, 7)] = T1t + T1u;
		    Ci[WS(csi, 9)] = T1o - T1n;
		    Cr[WS(csr, 9)] = T1t - T1u;
	       }
	       {
		    E T1x, T1N, T1M, T1O, T1E, T1I, T1H, T1J;
		    {
			 E T1v, T1w, T1K, T1L;
			 T1v = Tv - Ty;
			 T1w = T1i + T1h;
			 T1x = T1v + T1w;
			 T1N = T1v - T1w;
			 T1K = FNMS(KP555570233, T1y, KP831469612 * T1z);
			 T1L = FMA(KP555570233, T1B, KP831469612 * T1C);
			 T1M = T1K + T1L;
			 T1O = T1L - T1K;
		    }
		    {
			 E T1A, T1D, T1F, T1G;
			 T1A = FMA(KP831469612, T1y, KP555570233 * T1z);
			 T1D = FNMS(KP555570233, T1C, KP831469612 * T1B);
			 T1E = T1A + T1D;
			 T1I = T1D - T1A;
			 T1F = TF - TC;
			 T1G = T1l + T1k;
			 T1H = T1F - T1G;
			 T1J = T1G + T1F;
		    }
		    Cr[WS(csr, 13)] = T1x - T1E;
		    Ci[WS(csi, 13)] = T1M - T1J;
		    Cr[WS(csr, 3)] = T1x + T1E;
		    Ci[WS(csi, 3)] = T1J + T1M;
		    Ci[WS(csi, 5)] = T1H + T1I;
		    Cr[WS(csr, 5)] = T1N + T1O;
		    Ci[WS(csi, 11)] = T1I - T1H;
		    Cr[WS(csr, 11)] = T1N - T1O;
	       }
	  }
     }
}

static const kr2c_desc desc = { 32, "r2cf_32", {140, 26, 16, 0}, &GENUS };

void X(codelet_r2cf_32) (planner *p) {
     X(kr2c_register) (p, r2cf_32, &desc);
}

#endif