/* COPYRIGHT The following is a notice of limited availability of the code, and disclaimer which must be included in the prologue of the code and in all source listings of the code. (C) COPYRIGHT 2008 University of Chicago Permission is hereby granted to use, reproduce, prepare derivative works, and to redistribute to others. This software was authored by: D. Levine Mathematics and Computer Science Division Argonne National Laboratory Group with programming assistance of participants in Argonne National Laboratory's SERS program. GOVERNMENT LICENSE Portions of this material resulted from work developed under a U.S. Government Contract and are subject to the following license: the Government is granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable worldwide license in this computer software to reproduce, prepare derivative works, and perform publicly and display publicly. DISCLAIMER This computer code material was prepared, in part, as an account of work sponsored by an agency of the United States Government. Neither the United States, nor the University of Chicago, nor any of their employees, makes any warranty express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. */ /***************************************************************************** * FILE: pga.c: This file contains all the routines that are data structure * neutral * * Authors: David M. Levine, Philip L. Hallstrom, and David M. Noelle, * Brian P. Walenz *****************************************************************************/ #include "pgapack.h" /*U**************************************************************************** PGARun - Highest level routine to execute the genetic algorithm. It is called after PGACreate and PGASetup have been called. Category: Generation Inputs: ctx - context variable evaluate - a pointer to the user's evaluation function, which must have the calling sequence shown in the example. Outputs: none Example: PGAContext *ctx, double f(PGAContext *ctx, int p, int pop); : ctx = PGACreate(&argc, argv, PGA_DATATYPE_BINARY, 100, PGA_MAXIMIZE); PGASetUp(ctx); PGARun(ctx, f); PGADestroy(ctx); ****************************************************************************U*/ void PGARun(PGAContext *ctx, double (*evaluate)(PGAContext *c, int p, int pop)) { MPI_Comm comm; /* value of default communicator */ int nprocs; /* number of processes in above */ int npops; /* number of populations */ int ndemes; /* number of demes */ PGADebugEntered("PGARun"); PGAFailIfNotSetUp("PGARun"); comm = PGAGetCommunicator(ctx); nprocs = PGAGetNumProcs (ctx, comm); npops = PGAGetNumIslands (ctx); ndemes = PGAGetNumDemes (ctx); /**********************************************************************/ /* Global model, one island, one deme */ /**********************************************************************/ if ( (npops == 1) && (ndemes == 1) ) { PGARunGM(ctx, evaluate, comm); } /**********************************************************************/ /* Island model, > one island, one deme */ /**********************************************************************/ else if( (npops > 1) && (ndemes == 1) ) { if ( nprocs == 1 ) PGAError (ctx, "PGARun: island model with one process", PGA_FATAL, PGA_VOID, (void *) &nprocs); if ( nprocs != npops) { PGAError (ctx, "PGARun: island model no. processes != no. pops", PGA_FATAL, PGA_VOID, (void *) &nprocs); } PGARunIM(ctx,evaluate,comm); } /**********************************************************************/ /* Neighborhood model, one island, > one deme */ /**********************************************************************/ else if( (npops == 1) && (ndemes > 1) ) { if ( nprocs == 1 ) PGAError (ctx, "PGARun: neighborhood model with one process", PGA_FATAL, PGA_VOID, (void *) &nprocs); if ( nprocs != ndemes) PGAError (ctx, "PGARun: neighborhood model no. processes " "!= no. demes", PGA_FATAL, PGA_VOID, (void *) &nprocs); PGARunNM(ctx,evaluate,comm); } /**********************************************************************/ /* Mixed model, > one island, > one deme */ /**********************************************************************/ else if( (npops > 1) && (ndemes > 1) ) { PGAError (ctx, "PGARun: Cannot execute mixed models", PGA_FATAL, PGA_VOID, (void *) &nprocs); } /**********************************************************************/ /* E R R O R */ /**********************************************************************/ else { PGAError (ctx, "PGARun: Invalid combination of numislands," "ndemes, and nprocs.", PGA_FATAL, PGA_VOID, (void *) &nprocs); } /**********************************************************************/ /* E X I T */ /**********************************************************************/ PGADebugExited("PGARun"); return; } /*U**************************************************************************** PGARunMutationAndCrossover - Performs crossover and mutation from one population to create the next. Assumes PGASelect has been called. Category: Generation Inputs: ctx - context variable oldpop - symbolic constant of old population newpop - symbolic constant of new population Outputs: newpop is modified by side-effect. Example: PGAContext *ctx, : PGARunMutationAndCrossover(ctx, PGA_OLDPOP, PGA_NEWPOP); ****************************************************************************U*/ void PGARunMutationAndCrossover (PGAContext *ctx, int oldpop, int newpop) { int i, j, n, m1, m2; int popsize, numreplace; double pc; PGADebugEntered("PGARunMutationAndCrossover"); popsize = PGAGetPopSize(ctx); numreplace = PGAGetNumReplaceValue(ctx); /*** first, copy n best strings (sorted by fitness) to new pop ***/ PGASortPop( ctx, oldpop ); n = popsize - numreplace; for ( i=0; i < n; i++ ) { j = PGAGetSortedPopIndex( ctx, i ); PGACopyIndividual ( ctx, j, oldpop, i, newpop ); } pc = PGAGetCrossoverProb(ctx); /*** reproduce to create the rest of the new population ***/ while ( n < popsize) { m1 = PGASelectNextIndex( ctx ); m2 = PGASelectNextIndex( ctx ); if ( PGARandomFlip(ctx, pc) ) { PGACrossover ( ctx, m1, m2, oldpop, PGA_TEMP1, PGA_TEMP2, newpop); /*** mutate and copy first string to new population ***/ PGAMutate ( ctx, PGA_TEMP1, newpop); while (PGADuplicate( ctx, PGA_TEMP1, newpop, newpop, n)) PGAChange ( ctx, PGA_TEMP1, newpop ); PGACopyIndividual ( ctx, PGA_TEMP1, newpop, n, newpop); n++; if ( n < popsize ) { /*** mutate and copy second string to new population ***/ PGAMutate ( ctx, PGA_TEMP2, newpop); while ( PGADuplicate( ctx, PGA_TEMP2, newpop, newpop, n)) PGAChange ( ctx, PGA_TEMP2, newpop ); PGACopyIndividual ( ctx, PGA_TEMP2, newpop, n, newpop); n++; } } else { PGACopyIndividual ( ctx, m1, oldpop, n, newpop ); n++; if ( n < ctx->ga.PopSize ) { PGACopyIndividual ( ctx, m2, oldpop, n, newpop ); n++; } } } PGADebugExited("PGARunMutationAndCrossover"); } /*U**************************************************************************** PGARunMutationOrCrossover - Performs crossover or mutation (but not both) from one populationto create the next. Assumes PGASelect has been called. Category: Generation Inputs: ctx - context variable oldpop - symbolic constant of old population newpop - symbolic constant of new population Outputs: newpop is modified by side-effect. Example: PGAContext *ctx, : PGARunMutationOrCrossover(ctx, PGA_OLDPOP, PGA_NEWPOP); ****************************************************************************U*/ void PGARunMutationOrCrossover ( PGAContext *ctx, int oldpop, int newpop ) { int i, j, n, m1, m2; int popsize, numreplace; double pc; PGADebugEntered("PGARunMutationOrCrossover"); popsize = PGAGetPopSize(ctx); numreplace = PGAGetNumReplaceValue(ctx); /*** first, copy n best strings (sorted by fitness) to new pop ***/ PGASortPop( ctx, oldpop ); n = popsize - numreplace; for ( i=0; i < n; i++ ) { j = PGAGetSortedPopIndex( ctx, i ); PGACopyIndividual ( ctx, j, oldpop, i, newpop ); } pc = PGAGetCrossoverProb(ctx); /*** reproduce to create the rest of the new population ***/ while ( n < popsize ) { m1 = PGASelectNextIndex( ctx ); m2 = PGASelectNextIndex( ctx ); if ( PGARandomFlip(ctx, pc) ) { PGACrossover ( ctx, m1, m2, oldpop, PGA_TEMP1, PGA_TEMP2, newpop); /*** copy first string to new population ***/ while (PGADuplicate(ctx, PGA_TEMP1, newpop, newpop, n)) PGAChange ( ctx, PGA_TEMP1, newpop ); PGACopyIndividual ( ctx, PGA_TEMP1, newpop, n, newpop); n++; if ( n < popsize ) { /*** copy second string to new population ***/ while (PGADuplicate(ctx, PGA_TEMP2, newpop, newpop, n)) PGAChange ( ctx, PGA_TEMP2, newpop ); PGACopyIndividual ( ctx, PGA_TEMP2, newpop, n, newpop); n++; } } else { PGACopyIndividual(ctx, m1, oldpop, PGA_TEMP1, newpop); PGAMutate ( ctx, PGA_TEMP1, newpop ); while (PGADuplicate(ctx, PGA_TEMP1, newpop, newpop, n )) PGAChange ( ctx, PGA_TEMP1, newpop ); PGACopyIndividual ( ctx, PGA_TEMP1, newpop, n, newpop); /* A bug of PGA ??? -- PGAChange doesn't set the UpToDateFlag, so it won't be evaluated and gives wrong evaluation result */ PGASetEvaluationUpToDateFlag (ctx, n, newpop, PGA_FALSE); n++; if ( n < popsize ) { PGACopyIndividual(ctx, m2, oldpop, PGA_TEMP2, newpop); PGAMutate ( ctx, PGA_TEMP2, newpop ); while (PGADuplicate(ctx, PGA_TEMP2, newpop, newpop, n )) PGAChange ( ctx, PGA_TEMP2, newpop ); PGACopyIndividual ( ctx, PGA_TEMP2, newpop, n, newpop); PGASetEvaluationUpToDateFlag (ctx, n, newpop, PGA_FALSE); n++; } } } PGADebugExited("PGARunMutationOrCrossover"); } /*U**************************************************************************** PGAUpdateGeneration - updates internal data structures for the next genetic algorithm iteration, and checks if the termination conditions, both user and PGAPack, have been met. This routine must be called by both master and slave processes at the end of each GA generation. Category: Generation Inputs: ctx - context variable comm - an MPI communicator Outputs: PGA_TRUE if the genetic algorithm has terminated, otherwise PGA_FALSE. Example: PGAContext *ctx; : PGAUpdateGeneration(ctx, MPI_COMM_WORLD); ****************************************************************************U*/ void PGAUpdateGeneration(PGAContext *ctx, MPI_Comm comm) { PGAIndividual *temp; int i, rank; PGADebugEntered("PGAUpdateGeneration"); PGADebugPrint( ctx, PGA_DEBUG_PRINTVAR,"PGAUpdateGeneration", "ga.iter = ", PGA_INT, (void *) &(ctx->ga.iter) ); rank = PGAGetRank(ctx, comm); ctx->ga.iter++; if (rank == 0) { if (ctx->rep.PrintOptions & PGA_REPORT_AVERAGE) PGAUpdateAverage(ctx, PGA_NEWPOP); if (ctx->rep.PrintOptions & PGA_REPORT_ONLINE) PGAUpdateOnline(ctx, PGA_NEWPOP); if (ctx->rep.PrintOptions & PGA_REPORT_OFFLINE) PGAUpdateOffline(ctx, PGA_NEWPOP); if ((ctx->ga.StoppingRule & PGA_STOP_NOCHANGE) || ctx->ga.restart) { i = PGAGetBestIndex(ctx, PGA_NEWPOP); if (ctx->rep.Best == PGAGetEvaluation(ctx, i, PGA_NEWPOP)) ctx->ga.ItersOfSame++; else { ctx->rep.Best = PGAGetEvaluation(ctx, i, PGA_NEWPOP); ctx->ga.ItersOfSame = 1; } } if (ctx->ga.StoppingRule & PGA_STOP_TOOSIMILAR) ctx->ga.PercentSame = PGAComputeSimilarity(ctx, ctx->ga.newpop); /* Clear this twice in case the user EOG calls PGASelect. */ ctx->ga.SelectIndex = 0; if (ctx->fops.EndOfGen) (*ctx->fops.EndOfGen)(&ctx); if (ctx->cops.EndOfGen) (*ctx->cops.EndOfGen)(ctx); ctx->ga.SelectIndex = 0; temp = ctx->ga.oldpop; ctx->ga.oldpop = ctx->ga.newpop; ctx->ga.newpop = temp; } PGADebugExited("PGAUpdateGeneration"); } /*U*************************************************************************** PGAGetDataType - Returns the data type used by the given context. Category: Generation Inputs: ctx - context variable Outputs: Returns the integer corresponding to the symbolic constant used to specify the data type. Example: PGAContext *ctx; int datatype; : datatype = PGAGetDataType(ctx); switch (datatype) { case PGA_DATATYPE_BINARY: printf("Data Type = PGA_DATATYPE_BINARY\n"); break; case PGA_DATATYPE_CHARACTER: printf("Data Type = PGA_DATATYPE_CHARACTER\n"); break; case PGA_DATATYPE_INTEGER: printf("Data Type = PGA_DATATYPE_INTEGER\n"); break; case PGA_DATATYPE_REAL: printf("Data Type = PGA_DATATYPE_REAL\n"); break; case PGA_DATATYPE_USER: printf("Data Type = PGA_DATATYPE_USER\n"); break; } ***************************************************************************U*/ int PGAGetDataType (PGAContext *ctx) { PGADebugEntered("PGAGetDataType"); PGADebugExited("PGAGetDataType"); return(ctx->ga.datatype); } /*U*************************************************************************** PGAGetOptDirFlag - Returns a symbolic constant that represents the direction of optimization Category: Generation Inputs: ctx - context variable Outputs: Returns the integer corresponding to the symbolic constant used to specify the direction of optimization Example: PGAContext *ctx; int optdir; : optdir = PGAGetOptDirFlag(ctx); switch (optdir) { case PGA_MAXIMIZE: printf("Optimization direction = PGA_MAXIMIZE\n"); break; case PGA_MINIMIZE: printf("Optimization direction = PGA_MINIMIZE\n"); break; } ***************************************************************************U*/ int PGAGetOptDirFlag (PGAContext *ctx) { PGADebugEntered("PGAGetOptDirFlag"); PGADebugExited("PGAGetOptDirFlag"); return(ctx->ga.optdir); } /*U*************************************************************************** PGAGetStringLength - Returns the string length Category: Generation Inputs: ctx - context variable Outputs: The string length Example: PGAContext *ctx; int stringlen; : stringlen = PGAGetStringLength(ctx); ***************************************************************************U*/ int PGAGetStringLength (PGAContext *ctx) { PGADebugEntered("PGAGetStringLength"); PGADebugExited("PGAGetStringLength"); return(ctx->ga.StringLen); } /*I*************************************************************************** PGAGetVariableStringLength - Returns the length of a variable length string. Category: Generation Inputs: ctx - context variable p - index into the population pop - symbolic constant for the population Outputs: The string length Example: PGAContext *ctx; int stringlen; : stringlen = PGAGetVariableStringLength(ctx, 0, PGA_NEWPOP); ***************************************************************************I*/ int PGAGetVariableStringLength (PGAContext *ctx, int p, int pop) { PGADebugEntered("PGAGetVariableStringLength"); PGADebugExited("PGAGetVariableStringLength"); PGAError(ctx, "PGAGetVariableStringLength: Variable length strings not " "currently supported.", PGA_FATAL, PGA_VOID, NULL); #if 0 ind = PGAGetIndividual(ctx, p, pop); return(ind->StringLength); #endif /* Make the compilers be quiet. */ return(0); } /*U*************************************************************************** PGAGetGAIterValue - returns the number of the current genetic algorithm generation Category: Generation Inputs: ctx - context variable Outputs: The genetic algorithm generation number Example: PGAContext *ctx; int g; : g = PGAGetGAIterValue(ctx); ***************************************************************************U*/ int PGAGetGAIterValue (PGAContext *ctx) { PGADebugEntered("PGAGetGAIterValue"); PGAFailIfNotSetUp("PGAGetGAIterValue"); PGADebugExited("PGAGetGAIterValue"); return(ctx->ga.iter); } /*U**************************************************************************** PGASetMutationOrCrossoverFlag - A boolean flag to indicate if recombination uses exactly one of crossover or mutation on selected strings. Category: Generation Inputs: ctx - context variable flag - PGA_TRUE (default) or PGA_FALSE Outputs: None Example: Set the genetic algorithm to use mutation only when crossover is not used. PGAContext *ctx; : PGASetMutationOrCrossoverFlag(ctx,PGA_FALSE); ****************************************************************************U*/ void PGASetMutationOrCrossoverFlag( PGAContext *ctx, int flag) { PGADebugEntered("PGASetMutationOrCrossoverFlag"); switch (flag) { case PGA_TRUE: case PGA_FALSE: ctx->ga.MutateOnlyNoCross = flag; break; default: PGAError (ctx, "PGASetMutationOrCrossoverFlag: Invalid value of " "flag:", PGA_FATAL, PGA_INT, (void *) &flag); break; } PGADebugExited("PGASetMutationOrCrossoverFlag"); } /*U**************************************************************************** PGASetMutationAndCrossoverFlag - A boolean flag to indicate if recombination uses both crossover and mutation on selected strings Category: Generation Inputs: ctx - context variable flag - PGA_TRUE (default) or PGA_FALSE Outputs: None Example: Set the genetic algorithm to use both crossover and mutation when reproducing strings. PGAContext *ctx; : PGASetMutationAndCrossoverFlag(ctx,PGA_FALSE); ****************************************************************************U*/ void PGASetMutationAndCrossoverFlag( PGAContext *ctx, int flag) { PGADebugEntered("PGASetMutationAndCrossoverFlag"); switch (flag) { case PGA_TRUE: case PGA_FALSE: ctx->ga.MutateOnlyNoCross = !flag; break; default: PGAError (ctx, "PGASetMutationAndCrossoverFlag: Invalid value of " "flag:", PGA_FATAL, PGA_INT, (void *) &flag); break; } PGADebugExited("PGASetMutationAndCrossoverFlag"); } /*U*************************************************************************** PGAGetMutationOrCrossoverFlag - Returns true if mutation only occurs when crossover does not. Category: Generation Inputs: ctx - context variable Outputs: Returns PGA_TRUE if mutation only occurs when crossover does not, otherwise, returns PGA_FALSE. Example: PGAContext *ctx; int mutatetype; : mutatetype = PGAGetMutationOrCrossoverFlag(ctx); switch (mutatetype) { case PGA_TRUE: printf("Only mutating strings not undergoing crossover\n"); break; case PGA_FALSE: printf("Mutating strings only after crossover\n"); break; } ***************************************************************************U*/ int PGAGetMutationOrCrossoverFlag (PGAContext *ctx) { PGADebugEntered("PGAGetMutationOrCrossoverFlag"); PGAFailIfNotSetUp("PGAGetMutationOrCrossoverFlag"); PGADebugExited("PGAGetMutationOrCrossoverFlag"); return(ctx->ga.MutateOnlyNoCross); } /*U*************************************************************************** PGAGetMutationAndCrossoverFlag - Returns true if mutation occurs only when crossover does. Category: Generation Inputs: ctx - context variable Outputs: Returns PGA_TRUE if mutation is applied to crossed-over strings. Otherwise, returns PGA_FALSE Example: PGAContext *ctx; int mutatetype; : mutatetype = PGAGetMutationAndCrossoverFlag(ctx); switch (mutatetype) { case PGA_TRUE: printf("Mutating strings only after crossover\n"); break; case PGA_FALSE: printf("Only mutating strings not undergoing crossover\n"); break; } ***************************************************************************U*/ int PGAGetMutationAndCrossoverFlag (PGAContext *ctx) { PGADebugEntered("PGAGetMutationAndCrossoverFlag"); PGAFailIfNotSetUp("PGAGetMutationAndCrossoverFlag"); PGADebugExited("PGAGetMutationAndCrossoverFlag"); return(!ctx->ga.MutateOnlyNoCross); }