/* COPYRIGHT The following is a notice of limited availability of the code, and disclaimer which must be included in the prologue of the code and in all source listings of the code. (C) COPYRIGHT 2008 University of Chicago Permission is hereby granted to use, reproduce, prepare derivative works, and to redistribute to others. This software was authored by: D. Levine Mathematics and Computer Science Division Argonne National Laboratory Group with programming assistance of participants in Argonne National Laboratory's SERS program. GOVERNMENT LICENSE Portions of this material resulted from work developed under a U.S. Government Contract and are subject to the following license: the Government is granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable worldwide license in this computer software to reproduce, prepare derivative works, and perform publicly and display publicly. DISCLAIMER This computer code material was prepared, in part, as an account of work sponsored by an agency of the United States Government. Neither the United States, nor the University of Chicago, nor any of their employees, makes any warranty express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. */ /***************************************************************************** * File: binary.c: This file contains routines specific to the binary * datatype. * * Authors: David M. Levine, Philip L. Hallstrom, David M. Noelle, * Brian P. Walenz *****************************************************************************/ #include "pgapack.h" /*U**************************************************************************** PGASetBinaryAllele - sets a binary allele to the specified value. Category: Fitness & Evaluation Inputs: ctx - context variable p - string index pop - symbolic constant of the population the string is in i - allele index val - binary value (either 1 or 0) to set the allele to Outputs: The allele is changed by side-effect. Example: Copies the alleles from member p in PGA_OLDPOP to member q PGA_NEWPOP. Assumes strings are of the same length. PGAContext *ctx; int p, q, i; : for (i=PGAGetStringLength(ctx)-1; i>=0; i--) PGASetBinaryAllele(ctx, q, PGA_NEWPOP, i, PGAGetBinaryAllele(ctx, p, PGA_OLDPOP, i)) ****************************************************************************U*/ void PGASetBinaryAllele ( PGAContext *ctx, int p, int pop, int i, int val ) { int windex; /* index of the computer word allele i is in */ int bix; /* bit position in word chrom[windex] of allele i */ PGAIndividual *ind; PGABinary *chrom; PGADebugEntered("PGASetBinaryAllele"); PGACheckDataType("PGAGetBinaryAllele", PGA_DATATYPE_BINARY); INDEX( windex,bix,i,WL ); ind = PGAGetIndividual ( ctx, p, pop ); chrom = (PGABinary *)ind->chrom; if ( val == 0 ) UNSET( bix, chrom[windex] ); else SET( bix, chrom[windex] ); PGADebugExited("PGASetBinaryAllele"); } /*U**************************************************************************** PGAGetBinaryAllele - returns the value of a (binary) allele in a PGA_DATATYPE_BINARY string Category: Fitness & Evaluation Inputs: ctx - context variable p - string index pop - symbolic constant of the population the string is in i - allele index Outputs: The value of the ith allele of string p in population pop. Example: Copies the alleles from member p in PGA_OLDPOP to member q PGA_NEWPOP. Assumes the strings are of the same length. PGAContext *ctx; int p, q, i; : for (i=PGAGetStringLength(ctx)-1; i>=0; i--) PGASetBinaryAllele(ctx, q, PGA_NEWPOP, i, PGAGetBinaryAllele(ctx, p, PGA_OLDPOP, i)) ****************************************************************************U*/ int PGAGetBinaryAllele ( PGAContext *ctx, int p, int pop, int i ) { int windex; /* index of the computer word allele i is in */ int bix; /* bit position in word chrom[windex] of allele i */ PGAIndividual *ind; PGABinary *chrom; PGADebugEntered("PGAGetBinaryAllele"); PGACheckDataType("PGAGetBinaryAllele", PGA_DATATYPE_BINARY); INDEX( windex,bix,i,WL ); ind = PGAGetIndividual ( ctx, p, pop ); chrom = (PGABinary *)ind->chrom; PGADebugExited("PGAGetBinaryAllele"); return( BIT(bix, chrom[windex]) != 0 ); } /*U**************************************************************************** PGASetBinaryInitProb - specify the probability of initializing an allele to "1" when creating a PGA_DATATYPE_BINARY string. The default value is 0.5. Category: Initialization Inputs: ctx - context variable p - the binary initialization probability Outputs: None Example: Set approximately 1 percent of all binary alleles to "1" when randomly initializing the population. PGAContext *ctx; : PGASetBinaryInitProb(ctx, 0.01); ****************************************************************************U*/ void PGASetBinaryInitProb ( PGAContext *ctx, double probability ) { PGADebugEntered("PGASetBinaryInitProb"); PGAFailIfSetUp("PGASetBinaryInitProb"); PGACheckDataType("PGASetBinaryInitProb", PGA_DATATYPE_BINARY); if ( (probability <= 1.0) && (probability >= 0.0) ) ctx->init.BinaryProbability = probability; else PGAError( ctx, "PGASetBinaryInitProb: Invalid value of probability:", PGA_FATAL, PGA_DOUBLE, (void *) &probability ); PGADebugExited("PGASetBinaryInitProb"); } /*U*************************************************************************** PGAGetBinaryInitProb - Returns the probability that an allele will be randomly initialized to "1" in a PGA_DATATYPE_BINARY string. Category: Initialization Inputs: ctx - context variable Outputs: The probability that a bit will be randomly initialized to one Example: PGAContext *ctx; double prob; : prob = PGAGetBinaryInitProb(ctx); ***************************************************************************U*/ double PGAGetBinaryInitProb (PGAContext *ctx) { PGADebugEntered("PGAGetBinaryInitProb"); PGAFailIfNotSetUp("PGAGetBinaryInitProb"); PGACheckDataType("PGAGetBinaryInitProb", PGA_DATATYPE_BINARY); PGADebugExited("PGAGetBinaryInitProb"); return(ctx->init.BinaryProbability); } /*I**************************************************************************** PGABinaryCreateString - Allocate a PGA_DATATYPE_BINARY string for member p of population pop. If initflag is PGA_TRUE, randomly initialize all alleles, otherwise clear all alleles. Inputs: ctx - context variable p - string index pop - symbolic constant of the population string p is in initflag - a flag, if set, randomly initialize, else clear alleles Outputs: Member p in population pop is allocated and initialized. Example: Allocates and clears alleles for all strings in PGA_NEWPOP PGAContext *ctx; int p; : for (p=PGAGetPopSize(ctx)-1; p>=0; p--) PGABinaryCreateString( ctx, p, PGA_NEWPOP, PGA_FALSE ); ****************************************************************************I*/ void PGABinaryCreateString(PGAContext *ctx, int p, int pop, int initflag) { int i, fp; PGABinary *s; PGAIndividual *new = PGAGetIndividual(ctx, p, pop); PGADebugEntered("PGABinaryCreateString"); PGADebugPrint( ctx, PGA_DEBUG_PRINTVAR, "PGABinaryCreateString", "initflag = ", PGA_INT, (void *) &initflag ); new->chrom = (void *)malloc(ctx->ga.tw * sizeof(PGABinary)); if (new->chrom == NULL) PGAError(ctx, "PGABinaryCreateString: No room to allocate " "new->chrom", PGA_FATAL, PGA_VOID, NULL); s = (PGABinary *)new->chrom; if (initflag) if (ctx->fops.InitString) { fp = ((p == PGA_TEMP1) || (p == PGA_TEMP2)) ? p : p+1; (*ctx->fops.InitString)(&ctx, &fp, &pop); } else { (*ctx->cops.InitString)(ctx, p, pop); } else for ( i=0; iga.tw; i++ ) s[i] = 0; PGADebugExited("PGABinaryCreateString"); } /*I**************************************************************************** PGABinaryMutation - randomly mutates a bit with a specified probability. This routine is called from PGAMutation. Inputs: ctx - context variable p - string index pop - symbolic constant for the population string p is in mr - probability of mutating (toggling) a bit Outputs: Returns the number of mutations Example: Mutates string p in population PGA_NEWPOP with a probability of 0.001 for each bit. PGAContext *ctx; int p; : PGABinaryMutation( ctx, p, PGA_NEWPOP, .001 ); ****************************************************************************I*/ int PGABinaryMutation( PGAContext *ctx, int p, int pop, double mr ) { int i,wi; int count = 0; PGABinary *c; PGADebugEntered("PGABinaryMutation"); c = (PGABinary *)PGAGetIndividual(ctx, p, pop)->chrom; for(wi=0; wiga.fw; wi++) for(i=0; i 0 */ if (ctx->ga.eb > 0 ) for(i=0;iga.eb;++i) if ( PGARandomFlip(ctx, mr) ) { TOGGLE(i,c[ctx->ga.fw]); count++; } PGADebugExited("PGABinaryMutation"); return(count); } /*I**************************************************************************** PGABinaryOneptCrossover - performs one-point crossover on two parent strings to create two children via side-effect Inputs: ctx - context variable p1 - the first parent string p2 - the second parent string pop1 - symbolic constant of the population containing p1 and p2 c1 - the first child string c2 - the second child string pop2 - symbolic constant of the population containing c1 and c2 Outputs: None. Example: Performs crossover on the two parent strings m and d, producing children s and b. PGAContext *ctx; int m, d, s, b; : PGABinaryOneptCrossover( ctx, m, d, PGA_OLDPOP, s, b, PGA_NEWPOP ); ****************************************************************************I*/ void PGABinaryOneptCrossover(PGAContext *ctx, int p1, int p2, int pop1, int c1, int c2, int pop2) { PGABinary *parent1 = (PGABinary *)PGAGetIndividual(ctx, p1, pop1)->chrom; PGABinary *parent2 = (PGABinary *)PGAGetIndividual(ctx, p2, pop1)->chrom; PGABinary *child1 = (PGABinary *)PGAGetIndividual(ctx, c1, pop2)->chrom; PGABinary *child2 = (PGABinary *)PGAGetIndividual(ctx, c2, pop2)->chrom; /* If the bits are numbered from 0 as follows: b b b b b b b b b b 0 1 2 3 4 5 6 7 30 31 Then if the cross site is bit 5 (which is the sixth bit by our numbering scheme) we would get o o o o o n n n n n 0 1 2 3 4 5 6 7 30 31 where o indicates the original bit and n is a new bit from the crossover operator. */ PGABinary mask; int windex; /* index of the word the crossover bit position is in */ int bix; /* bit position to perform crossover (mod WL) */ int i; int xsite; PGADebugEntered("PGABinaryOneptCrossover"); xsite = PGARandomInterval(ctx, 1,ctx->ga.StringLen-1); INDEX(windex,bix,xsite,WL); for(i=0;i> bix; child1[windex] = (~mask & parent1[windex])|(mask & parent2[windex]); child2[windex] = (~mask & parent2[windex])|(mask & parent1[windex]); for(i=windex+1;iga.tw;i++) { child1[i] = parent2[i]; child2[i] = parent1[i]; } PGADebugExited("PGABinaryOneptCrossover"); } /*I**************************************************************************** PGABinaryTwoptCrossover - performs two-point crossover on two parent strings producing two children via side-effect Inputs: ctx - context variable p1 - the first parent string p2 - the second parent string pop1 - symbolic constant of the population containing string p1 and p2 c1 - the first child string c2 - the second child string pop2 - symbolic constant of the population to contain string c1 and c2 Outputs: None. Example: Performs crossover on the two parent strings m and d, producing children s and b. PGAContext *ctx; int m, d, s, b; : PGABinaryTwoptCrossover( ctx, m, d, PGA_OLDPOP, s, b, PGA_NEWPOP ); ****************************************************************************I*/ void PGABinaryTwoptCrossover(PGAContext *ctx, int p1, int p2, int pop1, int c1, int c2, int pop2) { PGABinary *parent1 = (PGABinary *)PGAGetIndividual(ctx, p1, pop1)->chrom; PGABinary *parent2 = (PGABinary *)PGAGetIndividual(ctx, p2, pop1)->chrom; PGABinary *child1 = (PGABinary *)PGAGetIndividual(ctx, c1, pop2)->chrom; PGABinary *child2 = (PGABinary *)PGAGetIndividual(ctx, c2, pop2)->chrom; PGABinary mask, mask1, mask2; int windex1, windex2; int bix1, bix2; int i; int xsite1, xsite2; int temp; PGADebugEntered("PGABinaryTwoptCrossover"); /* pick two cross sites such that xsite2 > xsite1 */ xsite1 = PGARandomInterval(ctx, 1,ctx->ga.StringLen-1); xsite2 = xsite1; while ( xsite2 == xsite1 ) xsite2 = PGARandomInterval(ctx, 1,ctx->ga.StringLen-1); if ( xsite1 > xsite2 ) { temp = xsite1; xsite1 = xsite2; xsite2 = temp; } INDEX(windex1,bix1,xsite1,WL); INDEX(windex2,bix2,xsite2,WL); if ( windex1 == windex2 ) { /* both cross sites in the same word */ for(i=0;i> bix2; mask = mask1 | mask2; child1[windex1] = (mask & parent1[windex1])|(~mask & parent2[windex1]); child2[windex1] = (mask & parent2[windex1])|(~mask & parent1[windex1]); for(i=windex1+1;iga.tw;i++) { child1[i] = parent1[i]; child2[i] = parent2[i]; } } else { /* cross sites in different words */ for(i=0;i> bix1; child1[windex1] = (~mask & parent1[windex1])|(mask & parent2[windex1]); child2[windex1] = (~mask & parent2[windex1])|(mask & parent1[windex1]); for(i=windex1+1; i> bix2; child1[windex2] = (mask & parent1[windex2])|(~mask & parent2[windex2]); child2[windex2] = (mask & parent2[windex2])|(~mask & parent1[windex2]); for(i=windex2+1; iga.tw; i++) { child1[i] = parent1[i]; child2[i] = parent2[i]; } } PGADebugExited("PGABinaryTwoptCrossover"); } /*I**************************************************************************** PGABinaryUniformCrossover - performs uniform crossover on two parent strings producing two children via side-effect Inputs: ctx - context variable p1 - the first parent string p2 - the second parent string pop1 - symbolic constant of the population containing string p1 and p2 c1 - the first child string c2 - the second child string pop2 - symbolic constant of the population to contain string c1 and c2 Outputs: None. Example: Performs crossover on the two parent strings m and d, producing children s and b. PGAContext *ctx; int m, d, s, b; : PGABinaryUniformCrossover( ctx, m, d, PGA_OLDPOP, s, b, PGA_NEWPOP ); ****************************************************************************I*/ void PGABinaryUniformCrossover(PGAContext *ctx, int p1, int p2, int pop1, int c1, int c2, int pop2) { PGABinary *parent1 = (PGABinary *)PGAGetIndividual(ctx, p1, pop1)->chrom; PGABinary *parent2 = (PGABinary *)PGAGetIndividual(ctx, p2, pop1)->chrom; PGABinary *child1 = (PGABinary *)PGAGetIndividual(ctx, c1, pop2)->chrom; PGABinary *child2 = (PGABinary *)PGAGetIndividual(ctx, c2, pop2)->chrom; PGABinary mask; int j,wi; PGADebugEntered("PGABinaryUniformCrossover"); for(wi=0;wiga.tw;wi++) { if ( parent1[wi] == parent2[wi] ) { child1[wi] = parent1[wi]; child2[wi] = parent2[wi]; } else { mask = 0; for (j=0;jga.UniformCrossProb)) SET(j,mask); child1[wi] = (mask & parent1[wi])|(~mask & parent2[wi]); child2[wi] = (mask & parent2[wi])|(~mask & parent1[wi]); } } PGADebugExited("PGABinaryUniformCrossover"); } /*I**************************************************************************** PGABinaryPrintString - writes a bit string to a file. Inputs: ctx - context variable fp - file pointer to file to write bit string to p - index of the string to write out pop - symbolic constant of the population string p is in Outputs: None. Example: Write string s to stdout. PGAContext *ctx; int s; : PGABinaryPrintString( ctx, stdout, s, PGA_NEWPOP ); ****************************************************************************I*/ void PGABinaryPrintString( PGAContext *ctx, FILE *fp, int p, int pop ) { PGABinary *c = (PGABinary *)PGAGetIndividual(ctx, p, pop)->chrom; int i; PGADebugEntered("PGABinaryPrintString"); for( i=0; iga.fw; i++ ) { fprintf(fp,"[ "); PGABinaryPrint( ctx, fp, (c+i), WL ); fprintf(fp," ]\n"); } if ( ctx->ga.eb > 0 ) { fprintf(fp,"[ "); PGABinaryPrint( ctx, fp, (c+ctx->ga.fw), ctx->ga.eb ); fprintf(fp," ]"); } PGADebugExited("PGABinaryPrintString"); } /*I**************************************************************************** PGABinaryCopyString - Copy one bit string to another Inputs: ctx - context variable p1 - string to copy pop1 - symbolic constant of population containing string p1 p2 - string to copy p1 to pop2 - symbolic constant of population containing string p2 Outputs: None. Example: Copy bit string x to y (both are implicitly assumed to have the same length). PGAContext *ctx; int x, y : PGABinaryCopyString ( ctx, x, PGA_OLDPOP, y, PGA_NEWPOP ); ****************************************************************************I*/ void PGABinaryCopyString (PGAContext *ctx, int p1, int pop1, int p2, int pop2) { PGABinary *source = (PGABinary *)PGAGetIndividual(ctx, p1, pop1)->chrom; PGABinary *dest = (PGABinary *)PGAGetIndividual(ctx, p2, pop2)->chrom; int i; PGADebugEntered("PGABinaryCopyString"); for (i = ctx->ga.tw-1; i>=0; i--) dest[i] = source[i]; PGADebugExited("PGABinaryCopyString"); } /*I**************************************************************************** PGABinaryDuplicate - Returns true if bit string a is a duplicate of bit string b, else returns false. Inputs: ctx - context variable p1 - string index of the first string to compare pop1 - symbolic constant of the population string p1 is in p2 - string index of the second string to compare pop2 - symbolic constant of the population string p2 is in Outputs: Returns true/false if strings are duplicates Example: Compare bit string x with y and print a message if they are the same. PGAContext *ctx; int x, y; : if ( PGABinaryDuplicate( ctx, x, PGA_NEWPOP, y, PGA_NEWPOP ) ) printf("strings are duplicates\n"); ****************************************************************************I*/ int PGABinaryDuplicate( PGAContext *ctx, int p1, int pop1, int p2, int pop2) { PGABinary *a = (PGABinary *)PGAGetIndividual(ctx, p1, pop1)->chrom; PGABinary *b = (PGABinary *)PGAGetIndividual(ctx, p2, pop2)->chrom; int wi; PGADebugEntered("PGABinaryDuplicate"); wi = ctx->ga.tw-1; if (a[0] == b[0]) for (; (wi>0) && (a[wi] == b[wi]); wi--); PGADebugExited("PGABinaryDuplicate"); return((wi==0) ? PGA_TRUE : PGA_FALSE); } /*I**************************************************************************** PGABinaryInitString - randomly initialize a string of type PGABinary Inputs: ctx - context variable p - index of string to randomly initialize pop - symbolic constant of the population string p is in Outputs: Example: PGAContext *ctx; int p; : PGABinaryInitString ( ctx, p, PGA_NEWPOP ); ****************************************************************************I*/ void PGABinaryInitString(PGAContext *ctx, int p, int pop) { PGABinary *c = (PGABinary *)PGAGetIndividual(ctx, p, pop)->chrom; int i; int windex; /* index of the computer word allele i is in */ int bix; /* binary position in word chrom[windex] of allele i */ PGADebugEntered("PGABinaryInitString"); for (i = 0; i < ctx->ga.tw; i++) c[i] = 0; for (i = 0; i < ctx->ga.StringLen; i++) { INDEX(windex,bix,i,WL); if ( PGARandomFlip(ctx, ctx->init.BinaryProbability) ) SET ( bix, c[windex] ); } PGADebugExited("PGABinaryInitString"); } /*I**************************************************************************** PGABinaryBuildDatatype - Build an MPI_Datatype for a binary string datatype. Inputs: ctx - context variable p - index of the string to build a datatype from pop - symbolic constant of the population string p is in Outputs: MPI_Datatype. Example: Called only by MPI routines. Not for user consumption. ****************************************************************************I*/ MPI_Datatype PGABinaryBuildDatatype(PGAContext *ctx, int p, int pop) { int counts[4]; /* Number of elements in each block (array of integer) */ MPI_Aint displs[4]; /* byte displacement of each block (array of integer) */ MPI_Datatype types[4]; /* type of elements in each block (array of handles to datatype objects) */ MPI_Datatype individualtype; /* new datatype (handle) */ PGAIndividual *traveller; /* address of individual in question */ PGADebugEntered("PGABinaryBuildDatatype"); traveller = PGAGetIndividual(ctx, p, pop); MPI_Address(&traveller->evalfunc, &displs[0]); counts[0] = 1; types[0] = MPI_DOUBLE; MPI_Address(&traveller->fitness, &displs[1]); counts[1] = 1; types[1] = MPI_DOUBLE; MPI_Address(&traveller->evaluptodate, &displs[2]); counts[2] = 1; types[2] = MPI_INT; MPI_Address(traveller->chrom, &displs[3]); counts[3] = ctx->ga.tw; types[3] = MPI_UNSIGNED_LONG; MPI_Type_struct(4, counts, displs, types, &individualtype); MPI_Type_commit(&individualtype); PGADebugExited("PGABinaryBuildDatatype"); return (individualtype); } /*I**************************************************************************** PGABinaryHammingDistance - Returns the Hamming distance between two strings Inputs: ctx - context variable s1 - the first string to compare s2 - the second string to compare Outputs: The Hamming distance between two strings Example: Returns the Hamming distance between bit strings x and y. PGAContext *ctx; PGABinary *x, *y; int d; : d = PGABinaryHammingDistance( ctx, x, y ); ****************************************************************************I*/ int PGABinaryHammingDistance ( PGAContext *ctx, PGABinary *s1, PGABinary *s2 ) { int j, wi, distance; PGABinary t1, t2, mask; PGADebugEntered("PGABinaryHammingDistance"); distance = 0; for(wi=0; wiga.tw; wi++) /* step through each word in the string */ if ( s1[wi] != s2[wi] ) { /* if equal, no bits are different */ /*fprintf(stdout,"s1[wi] = %x, s2[wi] = %x\n",s1[wi],s2[wi]);*/ mask = 1; for(j=0;j>=1,i++) /* mask each bit and set the */ *s++ = (mask&(*chrom)?'1':'0'); /* appropriate character */ *s=0; /* string terminator */ fprintf(fp, "%s", string); /* print out character string */ PGADebugExited("PGABinaryPrint"); }