/************************************************************************** ** ** Copyright (C) 1993 David E. Steward & Zbigniew Leyk, all rights reserved. ** ** Meschach Library ** ** This Meschach Library is provided "as is" without any express ** or implied warranty of any kind with respect to this software. ** In particular the authors shall not be liable for any direct, ** indirect, special, incidental or consequential damages arising ** in any way from use of the software. ** ** Everyone is granted permission to copy, modify and redistribute this ** Meschach Library, provided: ** 1. All copies contain this copyright notice. ** 2. All modified copies shall carry a notice stating who ** made the last modification and the date of such modification. ** 3. No charge is made for this software or works derived from it. ** This clause shall not be construed as constraining other software ** distributed on the same medium as this software, nor is a ** distribution fee considered a charge. ** ***************************************************************************/ /* File containing routines for computing the SVD of matrices */ #include #include #include "matrix.h" #include "matrix2.h" static char rcsid[] = "$Id: svd.c,v 1.5 2006/03/15 23:01:41 shang Exp $"; #define sgn(x) ((x) >= 0 ? 1 : -1) #define MAX_STACK 100 static void fixsvd(VEC *d, MAT *U, MAT *V); /* fixsvd -- fix minor details about SVD -- make singular values non-negative -- sort singular values in decreasing order -- variables as for bisvd() -- no argument checking */ static void fixsvd(d,U,V) VEC *d; MAT *U, *V; { int i, j, k, l, r, stack[MAX_STACK], sp; Real tmp, v; /* make singular values non-negative */ for ( i = 0; i < d->dim; i++ ) if ( d->ve[i] < 0.0 ) { d->ve[i] = - d->ve[i]; if ( U != MNULL ) for ( j = 0; j < U->m; j++ ) U->me[i][j] = - U->me[i][j]; } /* sort singular values */ /* nonrecursive implementation of quicksort due to R.Sedgewick, "Algorithms in C", p. 122 (1990) */ sp = -1; l = 0; r = d->dim - 1; for ( ; ; ) { while ( r > l ) { /* i = partition(d->ve,l,r) */ v = d->ve[r]; i = l - 1; j = r; for ( ; ; ) { /* inequalities are "backwards" for **decreasing** order */ while ( d->ve[++i] > v ) ; while (j>0 && d->ve[--j] < v ) ; if ( i >= j ) break; /* swap entries in d->ve */ tmp = d->ve[i]; d->ve[i] = d->ve[j]; d->ve[j] = tmp; /* swap rows of U & V as well */ if ( U != MNULL ) for ( k = 0; k < U->n; k++ ) { tmp = U->me[i][k]; U->me[i][k] = U->me[j][k]; U->me[j][k] = tmp; } if ( V != MNULL ) for ( k = 0; k < V->n; k++ ) { tmp = V->me[i][k]; V->me[i][k] = V->me[j][k]; V->me[j][k] = tmp; } } tmp = d->ve[i]; d->ve[i] = d->ve[r]; d->ve[r] = tmp; if ( U != MNULL ) for ( k = 0; k < U->n; k++ ) { tmp = U->me[i][k]; U->me[i][k] = U->me[r][k]; U->me[r][k] = tmp; } if ( V != MNULL ) for ( k = 0; k < V->n; k++ ) { tmp = V->me[i][k]; V->me[i][k] = V->me[r][k]; V->me[r][k] = tmp; } /* end i = partition(...) */ if ( i - l > r - i ) { stack[++sp] = l; stack[++sp] = i-1; l = i+1; } else { stack[++sp] = i+1; stack[++sp] = r; r = i-1; } } if ( sp < 0 ) break; r = stack[sp--]; l = stack[sp--]; } } /* bisvd -- svd of a bidiagonal m x n matrix represented by d (diagonal) and f (super-diagonals) -- returns with d set to the singular values, f zeroed -- if U, V non-NULL, the orthogonal operations are accumulated in U, V; if U, V == I on entry, then SVD == U^T.A.V where A is initial matrix -- returns d on exit */ VEC *bisvd(d,f,U,V) VEC *d, *f; MAT *U, *V; { int i, j, n; int i_min, i_max, split; Real c, s, shift, size, z; Real d_tmp, diff, t11, t12, t22, *d_ve, *f_ve; if ( ! d || ! f ) error(E_NULL,"bisvd"); if ( d->dim != f->dim + 1 ) error(E_SIZES,"bisvd"); n = d->dim; if ( ( U && U->n < n ) || ( V && V->m < n ) ) error(E_SIZES,"bisvd"); if ( ( U && U->m != U->n ) || ( V && V->m != V->n ) ) error(E_SQUARE,"bisvd"); if ( n == 1 ) { fixsvd(d, U,V); return d; } d_ve = d->ve; f_ve = f->ve; size = v_norm_inf(d) + v_norm_inf(f); i_min = 0; while ( i_min < n ) /* outer while loop */ { /* find i_max to suit; submatrix i_min..i_max should be irreducible */ i_max = n - 1; for ( i = i_min; i < n - 1; i++ ) if ( d_ve[i] == 0.0 || f_ve[i] == 0.0 ) { i_max = i; if ( f_ve[i] != 0.0 ) { /* have to ``chase'' f[i] element out of matrix */ z = f_ve[i]; f_ve[i] = 0.0; for ( j = i; j < n-1 && z != 0.0; j++ ) { givens(d_ve[j+1],z, &c, &s); s = -s; d_ve[j+1] = c*d_ve[j+1] - s*z; if ( j+1 < n-1 ) { z = s*f_ve[j+1]; f_ve[j+1] = c*f_ve[j+1]; } if ( U ) rot_rows(U,i,j+1,c,s,U); } } break; } if ( i_max <= i_min ) { i_min = i_max + 1; continue; } /* printf("bisvd: i_min = %d, i_max = %d\n",i_min,i_max); */ split = FALSE; while ( ! split ) { /* compute shift */ t11 = d_ve[i_max-1]*d_ve[i_max-1] + (i_max > i_min+1 ? f_ve[i_max-2]*f_ve[i_max-2] : 0.0); t12 = d_ve[i_max-1]*f_ve[i_max-1]; t22 = d_ve[i_max]*d_ve[i_max] + f_ve[i_max-1]*f_ve[i_max-1]; /* use e-val of [[t11,t12],[t12,t22]] matrix closest to t22 */ diff = (t11-t22)/2; shift = t22 - t12*t12/(diff + sgn(diff)*sqrt(diff*diff+t12*t12)); /* initial Givens' rotation */ givens(d_ve[i_min]*d_ve[i_min]-shift, d_ve[i_min]*f_ve[i_min], &c, &s); /* do initial Givens' rotations */ d_tmp = c*d_ve[i_min] + s*f_ve[i_min]; f_ve[i_min] = c*f_ve[i_min] - s*d_ve[i_min]; d_ve[i_min] = d_tmp; z = s*d_ve[i_min+1]; d_ve[i_min+1] = c*d_ve[i_min+1]; if ( V ) rot_rows(V,i_min,i_min+1,c,s,V); /* 2nd Givens' rotation */ givens(d_ve[i_min],z, &c, &s); d_ve[i_min] = c*d_ve[i_min] + s*z; d_tmp = c*d_ve[i_min+1] - s*f_ve[i_min]; f_ve[i_min] = s*d_ve[i_min+1] + c*f_ve[i_min]; d_ve[i_min+1] = d_tmp; if ( i_min+1 < i_max ) { z = s*f_ve[i_min+1]; f_ve[i_min+1] = c*f_ve[i_min+1]; } if ( U ) rot_rows(U,i_min,i_min+1,c,s,U); for ( i = i_min+1; i < i_max; i++ ) { /* get Givens' rotation for zeroing z */ givens(f_ve[i-1],z, &c, &s); f_ve[i-1] = c*f_ve[i-1] + s*z; d_tmp = c*d_ve[i] + s*f_ve[i]; f_ve[i] = c*f_ve[i] - s*d_ve[i]; d_ve[i] = d_tmp; z = s*d_ve[i+1]; d_ve[i+1] = c*d_ve[i+1]; if ( V ) rot_rows(V,i,i+1,c,s,V); /* get 2nd Givens' rotation */ givens(d_ve[i],z, &c, &s); d_ve[i] = c*d_ve[i] + s*z; d_tmp = c*d_ve[i+1] - s*f_ve[i]; f_ve[i] = c*f_ve[i] + s*d_ve[i+1]; d_ve[i+1] = d_tmp; if ( i+1 < i_max ) { z = s*f_ve[i+1]; f_ve[i+1] = c*f_ve[i+1]; } if ( U ) rot_rows(U,i,i+1,c,s,U); } /* should matrix be split? */ for ( i = i_min; i < i_max; i++ ) if ( fabs(f_ve[i]) < MACHEPS*(fabs(d_ve[i])+fabs(d_ve[i+1])) ) { split = TRUE; f_ve[i] = 0.0; } else if ( fabs(d_ve[i]) < MACHEPS*size ) { split = TRUE; d_ve[i] = 0.0; } /* printf("bisvd: d =\n"); v_output(d); */ /* printf("bisvd: f = \n"); v_output(f); */ } } fixsvd(d,U,V); return d; } MAT *bifactor(MAT *A, MAT *U, MAT *V); /* bifactor -- perform preliminary factorisation for bisvd -- updates U and/or V, which ever is not NULL */ MAT *bifactor(A,U,V) MAT *A, *U, *V; { int k; static VEC *tmp1=VNULL, *tmp2=VNULL; Real beta; if ( ! A ) error(E_NULL,"bifactor"); if ( ( U && ( U->m != U->n ) ) || ( V && ( V->m != V->n ) ) ) error(E_SQUARE,"bifactor"); if ( ( U && U->m != A->m ) || ( V && V->m != A->n ) ) error(E_SIZES,"bifactor"); tmp1 = v_resize(tmp1,A->m); tmp2 = v_resize(tmp2,A->n); MEM_STAT_REG(tmp1,TYPE_VEC); MEM_STAT_REG(tmp2,TYPE_VEC); if ( A->m >= A->n ) for ( k = 0; k < A->n; k++ ) { get_col(A,k,tmp1); hhvec(tmp1,k,&beta,tmp1,&(A->me[k][k])); hhtrcols(A,k,k+1,tmp1,beta); if ( U ) hhtrcols(U,k,0,tmp1,beta); if ( k+1 >= A->n ) continue; get_row(A,k,tmp2); hhvec(tmp2,k+1,&beta,tmp2,&(A->me[k][k+1])); hhtrrows(A,k+1,k+1,tmp2,beta); if ( V ) hhtrcols(V,k+1,0,tmp2,beta); } else for ( k = 0; k < A->m; k++ ) { get_row(A,k,tmp2); hhvec(tmp2,k,&beta,tmp2,&(A->me[k][k])); hhtrrows(A,k+1,k,tmp2,beta); if ( V ) hhtrcols(V,k,0,tmp2,beta); if ( k+1 >= A->m ) continue; get_col(A,k,tmp1); hhvec(tmp1,k+1,&beta,tmp1,&(A->me[k+1][k])); hhtrcols(A,k+1,k+1,tmp1,beta); if ( U ) hhtrcols(U,k+1,0,tmp1,beta); } return A; } /* svd -- returns vector of singular values in d -- also updates U and/or V, if one or the other is non-NULL -- destroys A */ VEC *svd(A,U,V,d) MAT *A, *U, *V; VEC *d; { static VEC *f=VNULL; int i, limit; MAT *A_tmp; if ( ! A ) error(E_NULL,"svd"); if ( ( U && ( U->m != U->n ) ) || ( V && ( V->m != V->n ) ) ) error(E_SQUARE,"svd"); if ( ( U && U->m != A->m ) || ( V && V->m != A->n ) ) error(E_SIZES,"svd"); A_tmp = m_copy(A,MNULL); if ( U != MNULL ) m_ident(U); if ( V != MNULL ) m_ident(V); limit = min(A_tmp->m,A_tmp->n); d = v_resize(d,limit); f = v_resize(f,limit-1); MEM_STAT_REG(f,TYPE_VEC); bifactor(A_tmp,U,V); if ( A_tmp->m >= A_tmp->n ) for ( i = 0; i < limit; i++ ) { d->ve[i] = A_tmp->me[i][i]; if ( i+1 < limit ) f->ve[i] = A_tmp->me[i][i+1]; } else for ( i = 0; i < limit; i++ ) { d->ve[i] = A_tmp->me[i][i]; if ( i+1 < limit ) f->ve[i] = A_tmp->me[i+1][i]; } if ( A_tmp->m >= A_tmp->n ) bisvd(d,f,U,V); else bisvd(d,f,V,U); M_FREE(A_tmp); return d; }