/************************************************************************** ** ** Copyright (C) 1993 David E. Steward & Zbigniew Leyk, all rights reserved. ** ** Meschach Library ** ** This Meschach Library is provided "as is" without any express ** or implied warranty of any kind with respect to this software. ** In particular the authors shall not be liable for any direct, ** indirect, special, incidental or consequential damages arising ** in any way from use of the software. ** ** Everyone is granted permission to copy, modify and redistribute this ** Meschach Library, provided: ** 1. All copies contain this copyright notice. ** 2. All modified copies shall carry a notice stating who ** made the last modification and the date of such modification. ** 3. No charge is made for this software or works derived from it. ** This clause shall not be construed as constraining other software ** distributed on the same medium as this software, nor is a ** distribution fee considered a charge. ** ***************************************************************************/ /* Matrix factorisation routines to work with the other matrix files. */ static char rcsid[] = "$Id: bkpfacto.c,v 1.3 2000/04/05 20:55:29 soliday Exp $"; #include #include #include "matrix.h" #include "matrix2.h" #define btos(x) ((x) ? "TRUE" : "FALSE") /* Most matrix factorisation routines are in-situ unless otherwise specified */ #define alpha 0.6403882032022076 /* = (1+sqrt(17))/8 */ double sqr(double x); /* sqr -- returns square of x -- utility function */ double sqr(x) double x; { return x*x; } static void interchange(MAT *A, int i, int j); /* interchange -- a row/column swap routine */ static void interchange(A,i,j) MAT *A; /* assumed != NULL & also SQUARE */ int i, j; /* assumed in range */ { Real **A_me, tmp; int k, n; A_me = A->me; n = A->n; if ( i == j ) return; if ( i > j ) { k = i; i = j; j = k; } for ( k = 0; k < i; k++ ) { /* tmp = A_me[k][i]; */ tmp = m_entry(A,k,i); /* A_me[k][i] = A_me[k][j]; */ m_set_val(A,k,i,m_entry(A,k,j)); /* A_me[k][j] = tmp; */ m_set_val(A,k,j,tmp); } for ( k = j+1; k < n; k++ ) { /* tmp = A_me[j][k]; */ tmp = m_entry(A,j,k); /* A_me[j][k] = A_me[i][k]; */ m_set_val(A,j,k,m_entry(A,i,k)); /* A_me[i][k] = tmp; */ m_set_val(A,i,k,tmp); } for ( k = i+1; k < j; k++ ) { /* tmp = A_me[k][j]; */ tmp = m_entry(A,k,j); /* A_me[k][j] = A_me[i][k]; */ m_set_val(A,k,j,m_entry(A,i,k)); /* A_me[i][k] = tmp; */ m_set_val(A,i,k,tmp); } /* tmp = A_me[i][i]; */ tmp = m_entry(A,i,i); /* A_me[i][i] = A_me[j][j]; */ m_set_val(A,i,i,m_entry(A,j,j)); /* A_me[j][j] = tmp; */ m_set_val(A,j,j,tmp); } /* BKPfactor -- Bunch-Kaufman-Parlett factorisation of A in-situ -- A is factored into the form P'AP = MDM' where P is a permutation matrix, M lower triangular and D is block diagonal with blocks of size 1 or 2 -- P is stored in pivot; blocks[i]==i iff D[i][i] is a block */ MAT *BKPfactor(A,pivot,blocks) MAT *A; PERM *pivot, *blocks; { int i, j, k, n, onebyone, r; Real **A_me, aii, aip1, aip1i, lambda, sigma, tmp; Real det, s, t; if ( ! A || ! pivot || ! blocks ) error(E_NULL,"BKPfactor"); if ( A->m != A->n ) error(E_SQUARE,"BKPfactor"); if ( A->m != pivot->size || pivot->size != blocks->size ) error(E_SIZES,"BKPfactor"); n = A->n; A_me = A->me; px_ident(pivot); px_ident(blocks); for ( i = 0; i < n; i = onebyone ? i+1 : i+2 ) { /* printf("# Stage: %d\n",i); */ aii = fabs(m_entry(A,i,i)); lambda = 0.0; r = (i+1 < n) ? i+1 : i; for ( k = i+1; k < n; k++ ) { tmp = fabs(m_entry(A,i,k)); if ( tmp >= lambda ) { lambda = tmp; r = k; } } /* printf("# lambda = %g, r = %d\n", lambda, r); */ /* printf("# |A[%d][%d]| = %g\n",r,r,fabs(m_entry(A,r,r))); */ /* determine if 1x1 or 2x2 block, and do pivoting if needed */ if ( aii >= alpha*lambda ) { onebyone = TRUE; goto dopivot; } /* compute sigma */ sigma = 0.0; for ( k = i; k < n; k++ ) { if ( k == r ) continue; tmp = ( k > r ) ? fabs(m_entry(A,r,k)) : fabs(m_entry(A,k,r)); if ( tmp > sigma ) sigma = tmp; } if ( aii*sigma >= alpha*sqr(lambda) ) onebyone = TRUE; else if ( fabs(m_entry(A,r,r)) >= alpha*sigma ) { /* printf("# Swapping rows/cols %d and %d\n",i,r); */ interchange(A,i,r); px_transp(pivot,i,r); onebyone = TRUE; } else { /* printf("# Swapping rows/cols %d and %d\n",i+1,r); */ interchange(A,i+1,r); px_transp(pivot,i+1,r); px_transp(blocks,i,i+1); onebyone = FALSE; } /* printf("onebyone = %s\n",btos(onebyone)); */ /* printf("# Matrix so far (@checkpoint A) =\n"); */ /* m_output(A); */ /* printf("# pivot =\n"); px_output(pivot); */ /* printf("# blocks =\n"); px_output(blocks); */ dopivot: if ( onebyone ) { /* do one by one block */ if ( m_entry(A,i,i) != 0.0 ) { aii = m_entry(A,i,i); for ( j = i+1; j < n; j++ ) { tmp = m_entry(A,i,j)/aii; for ( k = j; k < n; k++ ) m_sub_val(A,j,k,tmp*m_entry(A,i,k)); m_set_val(A,i,j,tmp); } } } else /* onebyone == FALSE */ { /* do two by two block */ det = m_entry(A,i,i)*m_entry(A,i+1,i+1)-sqr(m_entry(A,i,i+1)); /* Must have det < 0 */ /* printf("# det = %g\n",det); */ aip1i = m_entry(A,i,i+1)/det; aii = m_entry(A,i,i)/det; aip1 = m_entry(A,i+1,i+1)/det; for ( j = i+2; j < n; j++ ) { s = - aip1i*m_entry(A,i+1,j) + aip1*m_entry(A,i,j); t = - aip1i*m_entry(A,i,j) + aii*m_entry(A,i+1,j); for ( k = j; k < n; k++ ) m_sub_val(A,j,k,m_entry(A,i,k)*s + m_entry(A,i+1,k)*t); m_set_val(A,i,j,s); m_set_val(A,i+1,j,t); } } /* printf("# Matrix so far (@checkpoint B) =\n"); */ /* m_output(A); */ /* printf("# pivot =\n"); px_output(pivot); */ /* printf("# blocks =\n"); px_output(blocks); */ } /* set lower triangular half */ for ( i = 0; i < A->m; i++ ) for ( j = 0; j < i; j++ ) m_set_val(A,i,j,m_entry(A,j,i)); return A; } /* BKPsolve -- solves A.x = b where A has been factored a la BKPfactor() -- returns x, which is created if NULL */ VEC *BKPsolve(A,pivot,block,b,x) MAT *A; PERM *pivot, *block; VEC *b, *x; { static VEC *tmp=VNULL; /* dummy storage needed */ int i, j, n, onebyone; Real **A_me, a11, a12, a22, b1, b2, det, sum, *tmp_ve, tmp_diag; if ( ! A || ! pivot || ! block || ! b ) error(E_NULL,"BKPsolve"); if ( A->m != A->n ) error(E_SQUARE,"BKPsolve"); n = A->n; if ( b->dim != n || pivot->size != n || block->size != n ) error(E_SIZES,"BKPsolve"); x = v_resize(x,n); tmp = v_resize(tmp,n); MEM_STAT_REG(tmp,TYPE_VEC); A_me = A->me; tmp_ve = tmp->ve; px_vec(pivot,b,tmp); /* solve for lower triangular part */ for ( i = 0; i < n; i++ ) { sum = v_entry(tmp,i); if ( block->pe[i] < i ) for ( j = 0; j < i-1; j++ ) sum -= m_entry(A,i,j)*v_entry(tmp,j); else for ( j = 0; j < i; j++ ) sum -= m_entry(A,i,j)*v_entry(tmp,j); v_set_val(tmp,i,sum); } /* printf("# BKPsolve: solving L part: tmp =\n"); v_output(tmp); */ /* solve for diagonal part */ for ( i = 0; i < n; i = onebyone ? i+1 : i+2 ) { onebyone = ( block->pe[i] == i ); if ( onebyone ) { tmp_diag = m_entry(A,i,i); if ( tmp_diag == 0.0 ) error(E_SING,"BKPsolve"); /* tmp_ve[i] /= tmp_diag; */ v_set_val(tmp,i,v_entry(tmp,i) / tmp_diag); } else { a11 = m_entry(A,i,i); a22 = m_entry(A,i+1,i+1); a12 = m_entry(A,i+1,i); b1 = v_entry(tmp,i); b2 = v_entry(tmp,i+1); det = a11*a22-a12*a12; /* < 0 : see BKPfactor() */ if ( det == 0.0 ) error(E_SING,"BKPsolve"); det = 1/det; v_set_val(tmp,i,det*(a22*b1-a12*b2)); v_set_val(tmp,i+1,det*(a11*b2-a12*b1)); } } /* printf("# BKPsolve: solving D part: tmp =\n"); v_output(tmp); */ /* solve for transpose of lower traingular part */ for ( i = n-1; i >= 0; i-- ) { /* use symmetry of factored form to get stride 1 */ sum = v_entry(tmp,i); if ( block->pe[i] > i ) for ( j = i+2; j < n; j++ ) sum -= m_entry(A,i,j)*v_entry(tmp,j); else for ( j = i+1; j < n; j++ ) sum -= m_entry(A,i,j)*v_entry(tmp,j); v_set_val(tmp,i,sum); } /* printf("# BKPsolve: solving L^T part: tmp =\n");v_output(tmp); */ /* and do final permutation */ x = pxinv_vec(pivot,tmp,x); return x; }